В основу принципа работы трансформатора положен

Устройство и принцип действия трансформатора

  • Что такое трансформатор
    • Когда появился, история создания
  • Устройство и принцип работы трансформатора
    • Маркировка, расшифровка основных параметров
  • Виды трансформаторов по типу магнитопровода
  • Классификация трансформаторов
  • Режимы работы трансформаторов
  • Что такое трансформатор
    • Когда появился, история создания
  • Устройство и принцип работы трансформатора
    • Маркировка, расшифровка основных параметров
  • Виды трансформаторов по типу магнитопровода
  • Классификация трансформаторов
  • Режимы работы трансформаторов

Трансформатор — это основной элемент всей современной энергосистемы. В этой статье мы расскажем об устройстве и видах трансформаторов, принципе работы и практическом применении.

Что такое трансформатор

Трансформатор — это специальное устройство, придуманное для того, чтобы преобразовывать напряжение и передавать его на большие расстояния без изменения частоты тока.

Трансформатор — это статическое устройство, так как в нем нет движущихся элементов. Работа прибора происходит за счет переменного тока и построена на принципе электромагнитной индукции.

Основными задачами данных устройств являются:

  1. Передача электроэнергии на расстояния.
  2. Обеспечение необходимой схемы включения в преобразовательных устройствах и согласование напряжения на входе и выходе аппарата.
  3. Питание в цепях различных электротехнических, бытовых, теле- и радиоприборов.

Данные аппараты широко используются во всех областях и сферах промышленности, а именно:

  • в энергетике;
  • в электротехнике;
  • в машиностроении;
  • на транспорте.

Когда появился, история создания

Создание первого трансформатора связано с именами и разработками ученых из разных стран:

  1. Английский физик М. Фарадей в 1831 году открыл явление электромагнитной индукции, которая лежит в основе работы электротрансформатора.
  2. Немец Г. Румкорф в 1848 году изобрел индукционную катушку, которая считается прообразом трансформатора.
  3. Русский инженер П. Яблочков в 1876 году получил патент на изобретение устройства, которое стало первым трансформатором переменного тока (это был прибор с разомкнутым сердечником).
  4. Англичане Д. и Э. Гопкинсоны (братья) в 1884 году создали первые трансформаторы с замкнутыми сердечниками.
  5. Д. Свинберн предложил помещать прибор в сосуд с маслом для охлаждения устройства, что значительно повысило надежность работы трансформатора (конец 1880-х).
  6. Трехфазная система переменного тока была запатентована в США в 1888 году Николой Тесла.

В дальнейшем разработки ученых всего мира сводились к тому, чтобы улучшить свойства устройства и уменьшить потери напряжения в приборе.

Устройство и принцип работы трансформатора

Простейший трансформатор состоит из двух обмоток с изолированными проводами, которые намотаны на стальной сердечник, состоящий из нескольких слоев. Переменный ток подводится к одной из обмоток, которую называют первичной. Другая (вторичная) — подсоединяется к нагрузке.

Принцип работы электротрансформатора достаточно прост: когда к первичной обмотке подключают переменный ток, вокруг железного стержня, на который она намотана, появляется магнитное поле. Благодаря электродвижущей силе индукции при подключении вторичной обмотки к нагрузке происходит передача тока.

Маркировка, расшифровка основных параметров

На всех трансформаторы наносится специальная маркировка, которая позволяет определить тип устройства, условия его эксплуатации, номинальную мощность и напряжение. Российские и зарубежные приборы маркируют по-разному. В РФ чаще используют приборы, изготовленные по ГОСТу.

Информация о трансформаторе расположена на металлической пластине на корпусе устройства, наносится с помощью гравировки или тиснения:

  • название завода, на котором был изготовлен прибор;
  • год изготовления;
  • заводской номер;
  • номер стандарта, которому соответствует устройство;
  • показатель номинальной мощности (для трехфазных трансформаторов указывается для каждой обмотки);
  • показатель номинального тока (для всех обмоток);
  • количество фаз;
  • частота тока;
  • схема соединения обмоток;
  • требования к установке — внутренняя или наружная;
  • способ охлаждения;
  • другие сведения, в зависимости от типа охлаждения устройства.

Виды трансформаторов по типу магнитопровода

Магнитопровод — это устройство, которое усиливает магнитные потоки, возникающие от электротока в обмотках трансформаторов.

Магнитопроводы (сердечники) являются неотъемлемыми частями различного электрооборудования: катушек индуктивности, реле и пр.

В современном мире существуют различные конструкции трансформаторов, созданных под определенные цели и передачу напряжения разной мощности.

По типу сердечников устройства бывают:

  • стержневого типа (применяются, как правило, для трехфазных трансформаторов);
  • броневого типа (для трехфазных приборов);
  • тороидального типа (используются в трансформаторах, расположенных в различных электротехнических устройствах).

В стержневом типе используются вертикальные сердечники со ступенчатым сечением, которые образуют окружность с горизонтальными ярмами (часть стержней без обмоток). Обмотки в таких магнитопроводах находятся на вертикальных элементах. Система сердечника представляет собой замкнутую цепь.

В броневом типе сердечники имеют форму прямоугольника в сечении и располагаются в горизонтальном положении. Обмотки также выполнены в прямоугольной форме. Такая конструкция довольно сложная в изготовлении, поэтому используется нечасто, на специальных видах устройств.

В тороидальном (кольцевом) типе используют кольцевые ленточные сердечники. Их применяют для создания силовых однофазных трансформаторов. Сердечники делают из электротехнической стали толщиной 0,3 и 0,35 мм, изготовленной по специальной технологии. Материалом для тороидальных магнитопроводов являются феррит или карбонильное железо. Такие сердечники широко распространены в радиоэлектронике.

Конструкции магнитопроводов отличаются способами соединения сердечников с частью стержней, на которых нет обмотки.

  • В стыковом соединении части магнитопроводов собирают раздельно. Сначала на вертикальные сердечники устанавливаются обмотки, затем они соединяются при помощи шпилек с верхними ярмом. Монтируется нижнее горизонтальное ярмо. В такой конструкции можно легко поменять обмотки.
  • В шихтованном соединении стержни и ярма представляют собой слоенные плиты. Соединение деталей осуществляется вхождением элементов друг в друга в промежутки между слоями сердечника. Такая конструкция более сложная в сборке.

Классификация трансформаторов

  • повышающими (если на вторичной обмотке напряжение больше, чем на первичной);
  • понижающими (если на второй катушке напряжение меньше, чем на первой).

Напряжение на первичной и выходной катушках зависит от соотношения количества витков обмоток на них. Чем их больше, тем выше напряжение. Соответственно, если входная обмотка имеет больше витков, чем выходная, на ней будет более высокое напряжение, и наоборот.

Трансформаторы отличаются обширной классификацией по назначению:

  1. Силовой. Назначение силовых трансформаторов ясно из названия. В основном это устройства большой мощности, используемые в сетях ЛЭП для преобразования электрической энергии и передачи ее конечному потребителю. Использование таких устройств возможно в высоковольтных трехфазных сетях.
  2. Автотрансформатор. Это прибор, в котором первичная и вторичная обмотки соединены между собой напрямую. Такое устройство характеризуется тремя выводами. Трансформаторы данного типа имеют повышенный риск высоковольтного удара по нагрузке. Поэтому они должны быть надежно заземлены.
  3. Трансформатор тока или измерительный трансформатор. В таких устройствах первичную обмотку подключают последовательно в электроцепь с другими устройствами и получают гальваническую развязку. Первичная цепь контролируется изменением однофазной нагрузки, а вторичная катушка используется в цепи сигнализации или измерительных приборов. В таком типе устройства вторичная обмотка работает в режиме короткого замыкания.
  4. Трансформатор напряжения. Это устройство, понижающее напряжение. Обычно применяется для изоляции цепей защиты измерительных приборов.
  5. Импульсный. Это прибор, созданный для преобразования импульсов при обязательном сохранении их формы. Устройство меняет амплитуду и полярность импульсных сигналов, не затрагивая форму.
  6. Сварочный. Для работы такого устройства нужен большой сварочный ток, с помощью которого аппарат расплавляет металл. Сетевое напряжение при этом снижено до безопасного уровня.
  7. Разделительный. Основной характеристикой такого прибора является отсутствие электрической связи между обводками. Силовые разделительные аппараты используют для повышения безопасности электросетей и для обеспечения гальванической развязки между узлами электроцепей.
  8. Согласующий. Такое устройство применяется для согласования сопротивления в электронных схемах. Прибор обеспечивает минимальное искажение сигналов, создает развязки между узлами устройств в электрической цепи.
  9. Пик-трансформатор. Аппарат преобразовывает синусоидальный ток в импульсное напряжение. Полярность напряжения на выходе меняется через каждые полпериода.
  10. Воздушный. Это силовой трансформатор сухого охлаждения. Такой тип устройств обычно применяется для преобразования напряжения в сети, в том числе и в трехфазных схемах.
  11. Масляный. Это силовой трансформатор, у которого охлаждение происходит с помощью специального масла. Такие приборы применяют при большой выходной мощности (выше 6 кВ), чтобы предотвратить разрушение изоляции обмоток вследствие их перегрева.
  12. Сдвоенный дроссель. Устройство имеет абсолютно одинаковые катушки, между которыми образуется встречный индуктивный фильтр. Такой прибор эффективнее, чем у дросселя.
  13. Вращающийся. Устройство состоит из двух половинок сердечника с катушками, которые вращаются относительно друг друга. Обмен сигналами в приборе происходит при больших скоростях вращения.

Режимы работы трансформаторов

Выделяют 3 основных режима работы трансформаторов:

  1. Режим холостого хода, при котором выводы вторичной обмотки разомкнуты, а сопротивление нагрузки приравнивается к бесконечности. Измерение тока, который протекает в первичной обмотке, позволяет рассчитать коэффициент полезного действия трансформатора. При работе трансформатора в таком режиме можно вычислить коэффициент трансформации и потери в сердечнике.
  2. Рабочий режим или режим под нагрузкой — это режим, при котором вторичная цепь получает от первичной напряжение, ток и сопротивление.
  3. Режим короткого замыкания — это режим, при котором концы вторичной обмотки закорочены, мощность сконцентрирована в цепях обмоток, сопротивление нагрузки равно нулю. В этом состоянии можно определяют потери, которые расходуются на нагревание обмоток.

Столкнулись со сложной темой? Не нужно паниковать! Квалифицированные эксперты Феникс.Хелп готовы помочь в короткие сроки по самым разным дисциплинам.

Устройство и принцип работы трансформатора

Для преобразования электрического напряжения одной величины в электрическое напряжение другой величины, то есть для преобразования электрической мощности, применяют электрические трансформаторы.

Трансформатор может преобразовывать лишь переменный ток в переменный ток, поэтому для получения постоянного тока, переменный ток с трансформатора при необходимости выпрямляют. Для этой цели служат выпрямители.

Так или иначе, любой трансформатор (будь то трансформатор напряжения, трансформатор тока или импульсный трансформатор) работает благодаря явлению электромагнитной индукции, которое проявляет себя во всей красе именно при переменном или импульсном токе.

Читайте также  Водяной вакуумный насос принцип работы

Устройство трансформатора

В простейшем виде однофазный трансформатор состоит всего из трех основных частей: ферромагнитного сердечника (магнитопровода), а также первичной и вторичной обмоток. В принципе обмоток у трансформатора может быть и больше двух, но минимум их две. В некоторых случаях функцию вторичной обмотки может нести на себе часть витков первичной обмотки (см. виды трансформаторов), но подобные решения встречаются достаточно редко по сравнению с обычными.

Главная часть трансформатора — ферромагнитный сердечник. Когда трансформатор работает, то именно внутри ферромагнитного сердечника присутствует изменяющееся магнитное поле. Источником изменяющегося магнитного поля в трансформаторе служит переменный ток первичной обмотки.

Напряжение на вторичной обмотке трансформатора

Известно, что любой электрический ток сопровождается магнитным полем, соответственно переменный ток сопровождается переменным (изменяющимся по величине и направлению) магнитным полем.

Таким образом, подав в первичную обмотку трансформатора переменный ток, получим изменяющееся магнитное поле тока первичной обмотки. А чтобы магнитное поле было сконцентрировано главным образом внутри сердечника трансформатора, данный сердечник изготавливают из материала с высокой магнитной проницаемостью, в тысячи раз большей чем у воздуха, чтобы основная часть магнитного потока первичной обмотки замкнулась бы именно внутри сердечника, а не по воздуху.

Таким образом переменное магнитное поле первичной обмотки сконцентрировано в объеме сердечника трансформатора, который изготавливают из трансформаторной стали, феррита или другого подходящего материала, в зависимости от рабочей частоты и назначения конкретного трансформатора.

Вторичная обмотка трансформатора находится на общем сердечнике с его первичной обмоткой. Поэтому переменное магнитное поле первичной обмотки пронизывает также и витки вторичной обмотки.

А явление электромагнитной индукции как раз и заключается в том, что изменяющееся во времени магнитное поле наводит в пространстве вокруг себя изменяющееся электрическое поле. И поскольку в данном пространстве вокруг изменяющегося магнитного поля находится провод вторичной обмотки, то индуцированное переменное электрическое поле действует на носители заряда внутри этого провода.

Данное действие электрическим полем вызывает в каждом витке вторичной обмотки ЭДС. В результате между выводами вторичной обмотки появляется переменное электрическое напряжение. Когда вторичная обмотка включенного в сеть трансформатора не нагружена, трансформатор работает в режиме холостого хода.

Работа трансформатора под нагрузкой

Если же ко вторичной обмотке работающего трансформатора подключена некая нагрузка, то во всей вторичной цепи трансформатора возникает ток через нагрузку.

Данный ток порождает свое собственное магнитное поле, которое, по закону Ленца, имеет такое направление, что противодействует «причине, его вызывающей». То есть магнитное поле тока вторичной обмотки в каждый момент времени стремится уменьшить увеличивающееся магнитное поле первичной обмотки или же стремится поддержать магнитное поле первичной обмотки когда оно уменьшается, оно всегда направлено навстречу магнитному полю первичной обмотки.

Таким образом, когда вторичная обмотка трансформатора нагружена, в его первичной обмотке возникает противо-ЭДС, заставляющая первичную обмотку трансформатора потреблять из питающей сети больше тока.

Коэффициент трансформации

Соотношение витков первичной N1 и вторичной N2 обмоток трансформатора определяет соотношение между его входным U1 и выходным U2 напряжениями и входным I1 и выходным I2 токами, при работе трансформатора под нагрузкой. Данное соотношение называется коэффициентом трансформации трансформатора:

Коэффициент трансформации больше единицы если трансформатор понижающий, и меньше единицы — если трансформатор повышающий.

Трансформатор напряжения

Трансформатор напряжения является разновидностью понижающего трансформатора, предназначенной для гальванической развязки цепей высокого напряжения от цепей низкого напряжения.

Обычно, когда речь идет о высоком напряжении, имеют ввиду 6 и более киловольт (на первичной обмотке трансформатора напряжения), а под низким напряжением понимают величины порядка 100 вольт (на вторичной обмотке).

Такой трансформатор применяется, как правило, для измерительных целей. Он понижает, например, высокое напряжение линии электропередач до удобного для измерения низковольтного напряжения, при этом может также гальванически изолировать цепи измерения, защиты, управления, — от высоковольтной цепи. Трансформатор данного типа обычно работает в режиме холостого хода.

Трансформатором напряжения можно назвать в принципе и любой силовой трансформатор, применяемый для преобразования электрической мощности.

Трансформатор тока

У трансформатора тока первичная обмотка, состоящая обычно всего из одного витка, включается последовательно в цепь источника тока. Данным витком может выступать участок провода цепи, в которой необходимо измерить ток.

Провод просто продевается через окно сердечника трансформатора и становится этим самым единственным витком — витком первичной обмотки. Вторичная же его обмотка, имеющая много витков, подключается к измерительному прибору, отличающемуся малым внутренним сопротивлением.

Трансформаторы данного типа используются для измерения величин переменного тока в силовых цепях. Здесь ток и напряжение вторичной обмотки оказываются пропорциональны измеряемому току первичной обмотки (токовой цепи).

Трансформаторы тока широко применяются в устройствах релейной защиты электроэнергетических систем, поэтому обладают высокой точностью. Они делают измерения безопасными, так как гальванически надежно изолируют измерительную цепь от первичной цепи (обычно высоковольтной — десятки и сотни киловольт).

Импульсный трансформатор

Данный трансформатор предназначен для преобразования тока (напряжения) импульсной формы. Короткие импульсы, обычно прямоугольные, подаваемые на его первичную обмотку, заставляют трансформатор работать практически в режиме переходных процессов.

Такие трансформаторы используются в импульсных преобразователях напряжения и других импульсных устройствах, а также в качестве дифференцирующих трансформаторов.

Применение импульсных трансформаторов позволяет снизить вес и стоимость устройств, в которых они применяются просто в силу повышенной частоты преобразования (десятки и сотни килогерц) по сравнению с сетевыми трансформаторами, работающих на частоте 50-60 Гц. Прямоугольные импульсы, у которых длительность фронта много меньше длительности самого импульса, нормально трансформируются с малыми искажениями.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Трансформатор простыми словами

Мы привыкли к тому, что напряжение в розетке всегда 220 В. Возможно не все читатели подозревают, что прежде чем поступить к потребителю, выполнялись преобразования электрической энергии. Перед поступлением на провода ЛЭП, напряжение переменного тока увеличивали до десятков, а то и сотен киловольт, а на выходе – понижали, до привычных нам 220 В. Эти преобразования выполнили силовые трансформаторы. В данной статье я расскажу вам, что такое трансформатор простыми словами.

Потребность в преобразования переменного напряжения возникает практически на каждом шагу. Чаще всего мы испытываем необходимость в понижении напряжения, так как большинство узлов современных электронных устройств работает при низких напряжениях. Однако для некоторых цепей высоковольтных узлов требуются значительные напряжения, порядка нескольких тысяч вольт.

Рис. 1. Промышленный трансформатор

Что такое трансформатор?

Если коротко, то это стационарное устройство, используемое для преобразования переменного напряжения с сохранением частоты тока. Действие трансформатора основано на свойствах электромагнитной индукции.

Немного исторических фактов

В основу действия трансформатора легло явление магнитной индукции, открытое М. Фарадеем в 1831 г. Физик, работая с постоянным электрическим током, заметил отклонение стрелки гальванометра, подключенного к одной из двух катушек, намотанных на сердечник. Причем гальванометр реагировал только в моменты коммутации первой катушки.

Поскольку опыты проводились от источника постоянного тока, Фарадей не смог объяснить открытое явление.

Прообраз трансформатора появился лишь в 1848 году. Его изобрел немецкий механик Г. Румкорф, называя устройство индукционной катушкой особой конструкции. Однако Румкорф не заметил трансформации выходных напряжений.Датой рождения первого трансформатора считается день выдачи патента П. Н. Яблочкову на изобретение устройства с разомкнутым сердечником. Это случилось 30.11.1876 года.

Типы аппаратов с замкнутыми сердечниками появились в 1884 году. Их создали англичане Джон и Эдуард Гопкнинсоны.

По большому счету, технический интерес у электромехаников к переменному току возник только благодаря изобретению трансформатора. Идеи российского электротехника М. О. Доливо-Добровольского и всемирно известного Николы Тесла победили в спорах о преимуществах переменных напряжений именно благодаря возможности трансформации тока.

С победой идей этих великих электротехников потребности в трансформаторах резко выросла, что привело к их усовершенствованию и созданию новых типов приборов.

Общее устройство и принцип работы

Рассмотрим конструкцию простого трансформатора, с двумя катушками насаженных на замкнутый магнитопровод (см. Рис. 2). Катушку, на которую поступает ток, будем называть первичной, а выходную катушку – вторичной.

Рисунок 2. Устройство трансформатора

Фактически все типы трансформаторов используют электромагнитную индукцию для преобразования напряжения поступающего в цепь первичной обмотки. При этом выходное напряжение снимается из вторичных обмоток. Они различаются только по форме, материалам магнитопроводов и способам наматывания катушек.

Ферромагнитные сердечники применяются в низкочастотных моделях. Для таких сердечников используются материалы:

  • сталь;
  • пермаллой;
  • феррит.

В некоторых высокочастотных моделях магнитопроводы могут отсутствовать, а в некоторых изделиях применяют материалы из высокочастотного феррита или альсифера.

В связи с тем, что для характеристик ферромагнетиков характерна нелинейность намагничивания, сердечники набирают из листовых материалов, на которые надевают обмотки. Нелинейная индуктивность приводит к гистерезису, для уменьшения которого применяют метод шихтования магнитопроводов.

Форма сердечника может быть Ш-образной или торроидальной.

Рисунок 3. Внешний вид трансформатора

Базовые принципы действия

Когда на выводы первичных обмоток поступает синусоидальный ток, то он во второй катушке создает переменное магнитное поле, пронизывающее магнитопровод. В свою очередь, изменение магнитного потока провоцирует наведение ЭДС в катушках. При этом величина напряжения ЭДС в обмотках находится в пропорциональной зависимости от количества витков и частоты тока. Отношение количества витков в цепи первичной обмотки к числу витков вторичной катушки называется коэффициентом трансформации: k = W1 / W2, где символами W1 и W2 обозначено количество витков в катушках.

Читайте также  Как работает реверс на дрели?

Если k > 1, то трансформатор повышающий, а при 0 Виды магнитопроводов

Более широкий спектр охватывает классификация по назначению.

Силовые

Назначения силового трансформатора понятно из названия. Термин силовые применяется к семейству моделей, как правило, большой мощности, используемых для преобразования электрической энергии в сетях ЛЭП и в различных обслуживающих установках.

При трансформации сохраняются частоты переменного тока, поэтому возможно подключение силовых трансформаторов в группы для работы в высоковольтных трехфазных сетях.

Силовые аппараты могут соединяться в группы с различными схемами подключения обмоток: по принципу звездочки, треугольником или зигзагом. Схема звездочка оправдана, если в трехфазных сетях нагрузка симметрическая. В противном случае предпочтения отдают треугольнику. При таком способе подключения токи первичной обмотки подмагничивают по отдельности каждый стержневой магнитопровод.

Тогда однофазное сопротивление приблизится к расчетному, а перекос напряжений будет устранен.

Автотрансформаторы

Группа устройств, в которых первичная и вторичная обмотки за счет их прямого соединения между собой образуют электрическую связь, называется автотрансформаторами. Характерным признаком этой группы является несколько пар выводов, к которым можно подключить нагрузку.

Обмотки автотрансформаторов имеют не только магнитную, но и электрическую связь. Они нашли применение в соединениях заземленных сетей, работающих под напряжением, превышающим 110 кВ, но при низких коэффициентах трансформации – не более 3 – 4.

Можно первичную обмотку подключить последовательно в электрическую цепь с другими устройствами и получить гальваническую развязку. Такие приборы получили названия трансформаторов тока. Первичную цепь таких устройств контролируют путём изменения однофазной нагрузки, а вторичную катушку используют в цепях измерительных приборов или сигнализации. Второе название приборов – измерительные трансформаторы.

Особенностью работы измерительных трансформаторов является особый режим выходной обмотки. Она функционирует в критическом режиме короткого замыкания. При разрыве вторичной цепи возникает резкое повышение напряжения в ней, что может вызвать пробои или повреждение изоляции.

Трансформатор тока

Напряжения

Типичное применение – изоляция логических цепей защиты измерительных приборов от высокого напряжения. Трансформатор напряжения – это понижающий прибор, преобразующий высокое напряжение в более низкое.

Импульсные

В работе современной электронике применяются высокочастотные сигналы, которые часто необходимо отделить от других сигналов.
Задача импульсных трансформаторов – преобразования импульсных сигналов с сохранением формы импульса.

Для высокочастотных импульсных аппаратов выдвигаются требования о максимальном сохранении формы импульса на выходе. Имеет значение именно форма, а не амплитуда и даже не знак.

Сварочные

В работе сварочного аппарата важен большой сварочный ток. При этом, сетевое напряжение понижают до безопасного уровня. Благодаря мощному электрическому току дуговой разряд сварочного аппарата плавит металл.

В сварочном трансформаторе имеется возможность ступенчатого регулирования величины тока во вторичных цепях способом изменения индуктивного сопротивления, либо путем секционирования одной из обмоток.

Фото устройства представлено на рисунке 6. Обратите внимание на наличие коммутирующего переключателя.

Рис. 6. Трансформатор для сварочного полуавтомата на броневом магнитопроводе

В сварочных аппаратах применяют конструкции на основе однофазных трансформаторов, а также с применением трехфазных трансформаторов. Для сварки некоторых металлов, например, нержавейки, сварочный ток выпрямляют.

Разделительные

Устройства, в которых нет электрической связи между обмотками, называют резделительными трансформаторами. Силовые разделительные аппараты применяются для повышения безопасности электросетей. Другая область применения разделительных трансформаторов – обеспечение гальванической развязки между отдельными узлами электрических цепей.

Согласующие

Данные типы аппаратов применяют для согласования сопротивления каскадов электронных схем. Они обеспечивают минимальное искажение формы сигналов, создают гальванические развязки между узлами электронных устройств.

Пик-трансформаторы

Аппараты, преобразующие синусоидальные токи в импульсные напряжения. Полярность выходных напряжений меняется через каждых полпериода.

Воздушные и масляные

Силовые трансформаторы бывают сухими (с воздушным охлаждением) (см. рис. 7) и масляными (см. рис. 8).

Модели сухих силовых трансформаторов чаще всего используют для преобразований сетевых напряжений, в том числе и в схемах трехфазных сетей.

Рисунок 7. Сухой трехфазный трансформатор

При подключении нагрузки происходит нагревание обмоток, что грозит разрушением электрической изоляции. Поэтому в сетях с напряжениями свыше 6 кВ работают приборы с масляным охлаждением. Специальное трансформаторное масло повышает надежность изоляции, что очень важно при больших выходных мощностях.

Рис. 8. Строение промышленного трансформатора с масляным охлаждением

Сдвоенный дроссель

Конструктивно такой аппарат является трансформатором с одинаковыми катушками. Катушки одинаковой мощности образуют встречный индуктивный фильтр. Эффективность аппарата выше, чем у дросселя (при одинаковых размерах).

Вращающиеся

Применяются для обмена сигналами с вращающимися барабанами. Конструктивно состоят из двух половинок магнитопровода с катушками. Эти части вращаются относительно друг друга. Обмен сигналами происходит при больших скоростях вращения.

Обозначение на схемах

Трансформаторы наглядно изображаются на электрических схемах. Символически изображаются обмотки, которые разделены магнитопроводом в виде жирной или тонкой линии (см. рис. 9).

Пример обозначения

На схемах трехфазных трансформаторов обмотки начинаются со стороны сердечника.

Области применения

Кроме преобразования напряжений в электрических сетях, трансформаторы часто применяются в блоках питания радиоэлектронных устройств. Преимущественно это автотрансформаторы, которые одновременно выдают несколько напряжений для различных узлов.

Сегодня все чаще используют бестрансформаторные блоки питания. Однако там где требуется питание мощным переменным током, без электромагнитных устройств не обойтись.

Что такое трансформатор

Трансформатор – статическое устройство, имеющее две или более обмотки связанные индуктивно на магнитопроводе, предназначенное для преобразования одной величины напряжение и тока в другое посредством электромагнитной индукции, без изменения частоты.

  1. Немного истории
  2. Конструкция и принцип работы
  3. Режимы работы
  4. Классификации
  5. Силовой
  6. Измерительные
  7. Импульсный
  8. Автотрансформатор
  9. Разделительный
  10. Согласующий
  11. Пик-трансформатор
  12. Сдвоенный дроссель
  13. Сварочный
  14. Расшифровка основных параметров
  15. Цена трансформаторов
  16. Видео: Как проверить исправность трансформатора

Немного истории

Благодаря английскому физику Майклу Фарадею в 1831 году человечество познакомилось с электромагнитной индукцией. Великому учёному не суждено было стать изобретателем трансформатора, поскольку в его опытах фигурировал постоянный ток. Прообразом устройства можно считать необычную индукционную катушку француза Г. Румкорфа, которая была представлена учёному миру в 1848-м.

В 1876 году русский электротехник П. Н. Яблочков запатентовал трансформатор переменного тока с разомкнутым сердечником. Современному виду устройство обязано англичанам братьям Гопкинсон, а также румынами К. Циперановскому и О. Блати. С их помощью конструкция приобрела замкнутый магнитопровод и сохранила схему до наших дней.

Виды магнитопроводов

Конструкция и принцип работы

Обязательными элементами практически любого устройства преобразования напряжения являются изолированные обмотки, формированные из проволоки или ленты. Они располагаются на магнитопроводе, представленном сердечником из ферромагнитного материала. Связь между катушками осуществляется при помощи магнитного потока. В случае работы с высокочастотными токами (100 и более кГц) сердечник отсутствует.

Принцип работы трансформатора

В принципе работы трансформатора сочетаются основные постулаты электромагнетизма и электромагнитной индукции. Его можно рассмотреть на примере простейшего прибора с двумя катушками и стальным сердечником. Подача переменного напряжения на первичную обмотку приводит к возникновение магнитного потока в магнитопроводе, после чего во вторичной и первичной обмотке возникает ЭДС индукции, если подключить нагрузку ко вторичной обмотке то потечёт ток. Частота напряжения на выходе остаётся неизменной, а его величина зависит от соотношения витков катушек.

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

  • U1 и U2 – напряжение в первичной и вторичной обмотки,
  • N1 и N2 – количество витков в первичной и вторичной обмотке,
  • I1 и I2 – ток в первичной и вторичной обмотки.

Конструкция силового трансформатора:

Режимы работы

Характеристики трансформаторов определяются условиями работы, где ключевая роль отводится сопротивлению нагрузки. За основу берутся следующие режимы:

  1. Холостого хода. Выводы вторичной цепи находятся в разомкнутом состоянии, сопротивление нагрузки приравнивается бесконечности. Измерения тока намагничивания, протекающего в первичной обмотке, даёт возможность подсчитать КПД трансформатора. При помощи этого режима вычисляется коэффициент трансформации, а также потери в сердечнике;
  2. Под нагрузкой (рабочий). Вторичная цепь нагружается определённым сопротивлением. Параметры протекающего по ней тока напрямую связаны с соотношением витков катушек.
  3. Короткого замыкания. Концы вторичной обмотки закорочены, сопротивление нагрузки равно нулю. Режим информирует о потерях, которые вызываются нагревом обмоток, что на профессиональном языке значится «потерями в меди».

Режим короткого замыкания

Информация о поведении трансформатора в различных режимах получаются опытным путём с использованием схем замещения.

Классификации

Трансформаторы классифицируются по ряду параметров, таким как:

  • Назначение. Применяются: для изменения напряжения, измерения тока, защиты электрических цепей, как лабораторные и промежуточные устройства.
  • Способ установки. В зависимости от размещения и мобильности трансформатор может быть: стационарным, переносным, внутренним, внешним, опорным, шинным.
  • Число ступеней. Устройства подразделяются на одноступенчатые и каскадные.
  • Номинальное напряжение. Бывают низко- и высоковольтными.
  • Изоляция обмоток. Наиболее часто используется бумажно-масляная, сухая, компаундная.

Помимо этого, преобразовательные устройства разнятся типами, каждому из которых присуща своя система классификации.

Силовой

Наибольшее распространение получил силовой трансформатор. Приборы с непосредственным преобразованием переменного напряжения, рассчитанные на большую мощность, востребованы различными областями электроэнергетики. Они применяются на линиях электропередач с напряжениями 35–1150 кВ, в городских электросетях, работающих с напряжением 6 и 10 кВ, в обеспечении конечных потребителей напряжением 220/380В. С помощью устройств осуществляется питание всевозможных электроустановок и приборов в диапазоне от долей до сотен тысяч вольт.

Силовой трансформатор

Измерительные

Трансформаторы тока (ТА) понижают ток до необходимых показателей. Схема их работы отличается последовательным включением первичной обмотки и нагрузки. В то же время вторичная обмотка, находящаяся в состоянии, близком к короткому замыканию, используется для подключения измерительных приборов, исполнительных и индикаторных устройств. С помощью ТА осуществляется гальваническая развязка, что позволяет при измерениях отказаться от шунтов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

С помощью трансформаторов напряжения (ТН), тоже самое что и ТА только по напряжению. Помимо преобразования входных параметров, электроаппаратура и её отдельные элементы получают защиту от высокого вольтажа.

Высоковольтный ТН(слева) и низковольтный ТН(справа)

Импульсный

При необходимости преобразования сигналов импульсного характера применяются импульсные трансформаторы (ИТ). Изменяя амплитуду и полярность импульсов, устройства сохраняют их длительность и практически не затрагивают форму.

Автотрансформатор

В автотрансформаторах обмотки составляют одну цепь и взаимодействуют посредством электромагнитной и электрической связи. В отличие от других типов преобразователей, устройства могут содержать всего 3 вывода, позволяющих оперировать с различными напряжениями. Приборы выделяются высоким коэффициентом полезного действия, что особо сказывается при незначительном перепаде входного и выходного напряжения.

Однофазный(слева) и трёхфазный(справа)

Не имея гальванической развязки, представители данного типа повышают риск высоковольтного удара по нагрузке. Обязательным условием работы устройств являются надёжное заземление и низкий коэффициент трансформации. Недостаток компенсируется меньшим расходом материалов при изготовлении, компактностью и весом, стоимостью.

Разделительный

Для разделительных трансформаторов взаимодействие между обмотками исключено. Устройства повышают безопасность электрооборудования при повреждённой изоляции.

Разделительный трансформатор

Согласующий

Согласующие трансформаторы применяются для выравнивания сопротивлений между каскадами схем электроники. Сохраняя форму сигнала, они играют роль гальванической развязки.

Пик-трансформатор

С помощью пик-трансформатора синусоидальное напряжение преобразуется в импульсное. При этом импульсы меняют полярность с каждым полупериодом.

Сдвоенный дроссель

Особенностью сдвоенного дросселя является идентичность обмоток. Взаимная индукция катушек делает его более эффективным, по отношению стандартным дросселям. Устройства используются как входные фильтры в блоках питания, в звуко- и цифровой технике.

Сдвоенный дроссель

Сварочный

Помимо вышеперечисленных, существует понятие сварочные трансформаторы. Специализированные приборы для сварочных работ понижают напряжение бытовой сети при одновременном повышении тока, измеряемого тысячами ампер. Регулировка последнего осуществляется разделением обмоток на сектора, что отражается на индуктивном сопротивлении.

Сварочный трансформатор

Расшифровка основных параметров

Разнообразие в конструкции и широкий диапазон параметров трансформаторов привели к необходимости их маркировки по специальному стандарту. Не имея под рукой технического описания, характеристики устройства можно выяснить по нанесённой на его поверхности информации, выраженной буквенно-цифровым кодом.

Маркировка силовых трансформаторов содержит 4 блока.

Скачать и посмотреть ГОСТ 15150 можно здесь(откроется в новой вкладе в PDF формате): Смотреть файл

Расшифруем первые три блока:

Расшифровка маркировки: 1,2,3 блока

  1. Первая буква «А» прикреплена за автотрансформаторами. При её отсутствии буквы «Т» и «О» соответствуют трёхфазным и однофазным трансформаторам.
  2. Наличие далее буквы «Р» информирует об устройствах с расщеплённой обмоткой.
  3. Третья буква означает охлаждение, масляной естественной системе охлаждения присвоена литера «М». Естественному воздушному охлаждению выделена буква «С», масляное с принудительным обдувом обозначается «Д», с принудительной циркуляцией масла – «Ц». Сочетание «ДЦ» указывает на наличие принудительной циркуляции масла с одновременным воздушным обдувом.
  4. Литерой «Т» помечаются трёхобмоточные преобразователи.
  5. Последний знак характеризует особенности трансформатора:
  • «Н» – РПН(регулировка напряжения под нагрузкой);
  • пробел – переключение без возбуждения;
  • «Г» – грозозащищенный.

Цена трансформаторов

Цена трансформатора варьируется в широких пределах и зависит от множества факторов. Здесь учитывается тип и назначение, мощность и другие электрические параметры. На стоимости устройств отражается сложность производства и используемые материалы. Немаловажное значение играет защита и другие особенности.

Трансформатор известного производителя не может быть дешёвым. Однако покупатель может быть уверен, что приобретённое им устройство полностью соответствует указанным характеристикам, не выйдет из строя при первом включении и гарантированно отработает заложенный ресурс.

Высоковольтные трансформаторы можно оценивать по их мощности, то есть если мощность трансформатора 63 МВт(63000 кВА), то он стоит около 63 млн рублей, но это примерна оценка.

Видео: Как проверить исправность трансформатора

§63. Назначение и принцип действия трансформатора

Назначение трансформатора.

Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты.

Трансформаторы позволяют значительно повысить напряжение, вырабатываемое источниками переменного тока, установленными на электрических станциях, и осуществить передачу электроэнергии на дальние расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.

В местах потребления электроэнергии высокое напряжение, подаваемое от высоковольтных линий электропередачи, снова понижается трансформаторами до сравнительно небольших значений (127, 220, 380 и 660 В), при которых работают электрические потребители, установленные на фабриках, заводах, в депо и жилых домах. На э. п. с. переменного тока трансформаторы применяют для уменьшения напряжения, подаваемого из контактной сети к тяговым двигателям и вспомогательным цепям.

Кроме трансформаторов, применяемых в системах передачи и распределения электроэнергии, промышленностью выпускаются трансформаторы: тяговые (для э. п. с), для выпрямительных установок, лабораторные с регулированием напряжения, для питания радиоаппаратуры и др. Все эти трансформаторы называют силовыми.

Трансформаторы используют также для включения электроизмерительных приборов в цепи высокого напряжения (их называют измерительными), для электросварки и других целей. Трансформаторы бывают однофазные и трехфазные, двух- и многообмоточные.

Принцип действия трансформатора.

Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3.

Рис. 212. Схема включения однофазного трансформатора

Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемой вторичной, подключают потребители (непосредственно или через выпрямитель).

При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.

Э. д. с, индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока, пронизывающего виток, и скорости его изменения. Магнитный поток каждого трансформатора является определенной величиной, зависящей от напряжения и частоты изменения переменного тока в источнике, к которому подключен трансформатор. Постоянна также и скорость изменения магнитного потока, она определяется частотой изменения переменного тока.

Следовательно, в каждом витке первичной и вторичной обмоток индуцируется одинаковая э. д.с. В результате этого отношение действующих значений э. д. с. Е1 и E2, индуцированных в первичной и вторичной обмотках трансформатора, будет равно отношению чисел витков N1 и N2 этих обмоток, т. е.

Отношение э. д. с. Евн обмотки высшего напряжения к э. д. с. Eнн обмотки низшего напряжения (или отношение чисел их витков) называется коэффициентом трансформации,

Коэффициент трансформации всегда больше единицы. Если пренебречь падениями напряжения в первичной и вторичной обмотках трансформатора (в трансформаторах средней и большой мощности они не превышают обычно 2—5 % номинальных значений напряжений U1 и U2), то можно считать, что отношение напряжения U1 первичной обмотки к напряжению U2 вторичной обмотки приблизительно равно отношению чисел их витков, т. е.

Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.

В понижающих трансформаторах, наоборот, число витков вторичной обмотки меньше, чем в первичной.

Трансформатор не может осуществить преобразование напряжения постоянного тока. При подключении его первичной обмотки к сети постоянного тока в трансформаторе создается постоянный по величине и направлению магнитный поток, который не может индуцировать э. д. с. в первичной и вторичной обмотках. Поэтому не будет происходить передачи электрической энергии из первичной обмотки во вторичную.

При подключении первичной обмотки трансформатора к сети переменного тока через эту обмотку проходит некоторый ток, называемый током холостого хода. При включении нагрузки по вторичной обмотке трансформатора начинает проходить ток, при этом увеличивается и ток, проходящий по первичной обмотке.

Чем больше нагрузка трансформатора, т. е. электрическая мощность и ток i2, отдаваемые его вторичной обмоткой подключенным к ней приемникам, тем больше электрическая мощность и ток i1, поступающие из сети в первичную обмотку.

Ввиду того что потери мощности в трансформаторе обычно малы, можно приближенно принять, что мощности в первичной и вторичной обмотках одинаковы. В этом случае можно считать, что токи в обмотках трансформатора приблизительно обратно пропорциональны напряжениям: I1/I2 ≠ U2/U1 или что токи в обмотках трансформатора обратно пропорциональны числам витков первичной и вторичной обмоток: I1/I2 ≠ N2/N1.

Это означает, что в повышающем трансформаторе ток во вторичной обмотке меньше, чем в первичной (во столько раз, во сколько напряжение U2 больше напряжения U1), а в понижающем ток во вторичной обмотке больше, чем в первичной.

Поэтому в трансформаторах обмотки высшего напряжения выполняются из более тонких проводов, чем обмотки низшего напряжения.