Виды термической обработки стали и их назначение

Виды термической обработки стали

Чтобы придать металлам необходимые характеристики, прибегают к термической обработке. Завод металлоконструкций ЧЗМК выполняет закалку и отжиг стали и цветных сплавов.

Назначение термической обработки

Поскольку металлические конструкции и изделия подвергают разнообразным нагрузкам и испытаниям, они должны быть прочными, износостойкими, сопротивляться коррозии и другим разрушительным факторам. Чтобы повысить их стойкость, придать другие необходимые свойства, прибегают к термической обработке, которая меняет физико-механические характеристики сплавов. Иногда это промежуточный этап на стадии производства металлической продукции, иногда – конечный.

В процессе происходят важнейшие изменения в структуре металла. В зависимости от выбранного вида термообработки, будет отличаться и результат. В металлообрабатывающей промышленности с помощью таких технологий создают сплавы с уникальными характеристиками. Если назначение термической обработки – повысить податливость, пластичность, после нее металл будет легче резать, придавать ему желаемую форму.

Но некоторые операции увеличивают такие характеристики, как твердость, циклическая прочность. Кроме того, при помощи термообработки удается устранить дефекты, которые вызваны ошибками или просчетами на предыдущих производственных этапах.

Преимущества термообработки металлов

При грамотно выбранном режиме и продолжительности процедур удается добиться заданных характеристик. Термическую обработку ценят за следующие достоинства:

  • увеличивается стойкость металла к износу;
  • за счет улучшения технических показателей возрастает срок службы металлоконструкций и изделий;
  • уменьшается количество деталей, непригодных к использованию;
  • благодаря повышению прочности, долговечности и износостойкости сокращаются финансовые издержки.

Чтобы стали обрели желаемые свойства, необходимо специальное оборудование. Это высокотехнологичные печи, в которых за счет высоких температур добиваются сильного нагрева, вызывающего изменения в структуре металла. Однако для качественной термообработки важна регулировка мощности, других настроек. Поскольку каждому металлу требуется свой температурный режим. Также его подбирают под цели термической обработки – в зависимости от того, какие именно свойства нужно придать стали или цветному сплаву.

Принцип термической обработки

Хотя процессы отличаются температурным режимом, длительностью и другими тонкостями, в целом процедура протекает по одному и тому же принципу. Термическую обработку стали выполняют в следующей последовательности:

  1. Нагрев.
  2. Выдержка.
  3. Охлаждение.

Для первого этапа крайне важно точно подобрать температуру и выполнить нагрев до указанного предела. Температурный режим предопределяется тем, предстоит ли работать со сталью или с другими сплавами, какие именно свойства следует придать металлу.

Также имеет значение продолжительность выдержки. Сплавы претерпевают желаемые изменения в структуре, только когда температура держится в конкретном диапазоне в течение определенного времени.

Скорость охлаждения – не менее значимая константа. В некоторых случаях в работе со сталью при термообработке ее оставляют в печи, где она очень долго остывает вместе с оборудованием. Но иногда требуется более быстрое понижение температуры металла, чтобы в структуре не произошли нежелательные изменения. И тогда после термической обработки заготовку выставляют остывать на воздухе.

Виды термообработки стали

Имея общий алгоритм действий, предприятия выполняют термическую обработку разными способами. Располагая всего тремя инструментами – нагрев, выдержка и охлаждение, удается решать широчайший круг задач. Если одни виды термической обработки стали предназначены для увеличения ее прочности, то другие повышают пластичность и текучесть. Поэтому важен профессионализм, четкое понимание процессов, протекающих в структуре.

Отжиг

К одним из самых востребованных видов термообработки относят отжиг, который выполняют для понижения твердости и снятия внутреннего напряжения. Зачастую он необходим после горячей обработки стали давлением. Например, такой термической обработке подвергают заготовки после ковки, прокатки и штамповки. Иногда к отжигу прибегают вслед за сваркой. Он же используется, если на предыдущем этапе работы со сталью допущены ошибки и возникли дефекты.

Суть такой термической обработки заключается в нагреве выше критической точки, последующей выдержке и охлаждении. Благодаря этому структура обретает равновесность, впоследствии со сталью проще работать способом резания.

Закалка

Эту термическую обработку выполняют, чтобы увеличить твердость сплава. Если говорить о процессах, которые происходят со сталью, то в ее структуре вместо перлита образовывается мартенсит, проходя через стадию аустенита.

Воздействуя при помощи высоких температур на металл, сначала добиваются аустенитного превращения. Чтобы избежать промежуточную структуру, заготовку помещают в масло. Там происходит быстрое охлаждение стали до мартенситных превращений. Однако далее снижение температур должно замедлиться. Иначе распад аустенита будет неполным и не удастся при помощи термообработки придать стали желаемую твердость.

Отпуск

Такую термическую обработку осуществляют для повышения пластичности одновременно со снижением хрупкости. При этом удается сохранить высокую прочность стали. Отпуск делят на три вида, в зависимости от уровня нагрева металла. Он бывает:

  • низкотемпературным;
  • среднетемпературным;
  • высокотемпературным.

В первом случае термическую обработку выполняют, доведя сплав до 250 градусов. Преимущественно данный способ применим для закаленной стали. Также низкотемпературному отпуску подвергают инструменты из углеродистых и низколегированных металлов.

Второй вид предполагает термическую обработку стали с нагревом до 350-500 градусов. Он обеспечивает повышение упругости и выносливости. Улучшается еще одно ценное свойство – релаксационная стойкость.

Среднетемпературный отпуск протекает с охлаждением в два этапа – сначала в воде, а затем на воздухе. Благодаря этому стали придают сжимающие остаточные напряжения, что улучшает выносливость.

Высокотемпературный отпуск – это нагрев до 500-680 градусов. Благодаря данной термической обработке удается совместить высокую прочность с пластичностью и вязкостью. Подобные свойства особенно ценятся при производстве деталей, на которые будут выпадать повышенные ударные нагрузки. Например, это валы и зубчатые колеса.

Эти виды термообработки приводят к распаду мартенсита. Также в процессе происходит полигонизация и рекристаллизация.

Химико-термическая обработка

Суть подобных мероприятий заключается в нагреве и выдержке в химически активных средах. Посредством такой термообработки удается поменять химический состав, а не только структуру и свойства стали.

Процедура показана по отношению к заготовкам, в которых должна сохраняться твердость поверхности и вязкость сердцевины. Также удается повысить коррозионную стойкость и сопротивление усталости.

Химико-термическую обработку осуществляют, применяя жидкие, твердые и газообразные среды. В зависимости от того, какими веществами насыщается металл, выделяют следующие виды процедур:

  • цементация;
  • азотирование;
  • цианирование и пр.

Если термообработку совмещают с нанесением углерода, как в первом случае, сталям придают высокую прочность и сопротивление истиранию. Процесс происходит с погружением в порошкообразную смесь, в соляные ванны или в печи с цементирующими газами.

Суть азотирования заключается в насыщении стали азотом. Термообработку выполняют в печи, меняя длительность процесса, в зависимости от нужной глубины проникновения химического вещества.

Цианирование предполагает насыщение углеродом и азотом одновременно. Благодаря этому сталям придают высокую твердость, стойкость к истиранию и к коррозии. Такую термическую обработку выполняют, используя цианистые соли, азотирующие газы, порошки и пасты.

Термомеханическая обработка

Данная методика сравнительно новая. Она позволяет сохранить пластичность, выполнить пластическую деформацию и упрочнить структуру.

Металл доводят до аустетинтного состояния. При быстром охлаждении начинается формирование мартенсита. В это же время выполняют наклеп аустенита – посредством прокатки, штамповки либо ковки. За счет этого и происходит улучшение физико-механических свойств стали.

В зависимости от того, какая используется температура, термомеханическая обработка бывает:

  • высокотемпературной;
  • низкотемпературной.

В первом случае превышают высшую критическую точку, приступают к пластической деформации и завершают закалкой. Во втором – сначала происходит нагрев, затем охлаждение до температуры, когда сохраняется аустенит, но еще не начинается рекристаллизация. На этой стадии осуществляют пластическую деформацию.

Криогенная обработка

Чтобы поменять свойства металлов, используют не только высокие, но и низкие температуры. Как и при термообработке, удается снять остаточные напряжения и повысить износостойкость деталей. Увеличивается твердость заготовок, их прочность. В процессе остаточный аустенит трансформируется в мартенсит. Данные мероприятия выполняют в криогенном процессоре.

Применяемое оборудование

В термических цехах встречаются разнообразные установки. Поскольку и назначение термической обработки бывает различным, возникает потребность в нескольких видах печей:

  • шахтные;
  • камерные;
  • вакуумные;
  • с выдвижным подом.

Первые называют универсальными. В них возможно выполнять термообработку разными способами. В шахтных печах размещаются заготовки любого размера. Сюда отправляют детали для нагрева перед закалкой, для отжига и отпуска, для цементации. Более того, в них работают не только со сталями, но и с цветными металлами.

В камерных печах обрабатывают преимущественно заготовки среднего и мелкого размера. Их устанавливают на различных предприятиях и в качестве самостоятельных единиц, и в составе автоматизированного комплекса.

В вакуумных печах, помимо термической обработки, можно выполнять пайку, спекание материалов. Оборудование ценят за то, что оно в точности придерживается заданных технологических параметров. Температура не откланяется от нужного предела больше чем на 5 градусов. Такие печи используются для термической обработки конструкционной стали. В них проходят разнообразные процедуры титановые сплавы, тугоплавкие металлы.

Печи с выдвижным поддоном особенно удобны, когда необходимо обработать очень крупную деталь либо узел. Для загрузки и выгрузки стали обычно используют специальные краны и кран-балки. Однако оборудование этого типа имеет существенные недостатки. Во-первых, оно громоздкое, поэтому не на каждом предприятии найдется пространство для его установки. Во-вторых, из-за специфики конструкции высоки теплопотери.

В основном печи с выдвижным поддоном применимы для отжига сварных конструкций. В них доводят заготовки крупных габаритов до аустенитного состояния. Еще один способ применения – подготовка для ковки.

Особенности термообработки цветных сплавов

Цветные металлы требуют особого подхода к обработке, в отличие от работы со сталями. Индивидуальный подход обусловлен особенностями строения кристаллической решетки. Режим и характер воздействия подбирают также с учетом теплопроводности, химической активности. Но многие процессы с цветными металлами протекают в тех же печах, где обрабатывают стали.

Завод металлоконструкций ЧЗМК подвергает термической обработке различные стали, цветные металлы. Для этого предприятие оснащено разнообразным современным оборудованием. Высокая квалификация и профессионализм специалистов служат залогом превосходного результата.

Назначение и виды термической обработки

Назначение и виды термической обработки

Термическая обработка формирует физико-механические свойства инструмента: теплостойкость, прочность, твердость, износостойкость. Для изготовления инструмента используют такие виды термической обработки, как отжиг, закалка, отпуск, химико-термическая обработка. При неправильно выбранных или при нарушении заданных режимов термической обработки инструмент может оказаться вообще неработоспособным. Поэтому высокая культура термической обработки, особенно закалки и отпуска, предопределяет высокое качество инструмента.

Отжиг.

Отжиг осуществляют для снятия внутренних напряжений и понижения твердости после горячей обработки давлением (прокатка, ковка, штамповка) и сварки заготовок. Перед повторной закалкой инструментов, если первичная выполнена неправильно, инструменты также отжигают. Для этого заготовку или инструмент нагревают до температуры 830—850 °С, выдерживают при этой температуре 3—4 часа, а затем охлаждают с различными скоростями. Приблизительный режим отжига быстрорежущей стали представлен диаграммой рис. 3.18. Более предпочтительный — изотермический отжиг по диаграмме рис. 3.19.

Повышение температуры отжига и увеличение выдержки при этой температуре способствуют более полному растворению карбидов в аустените. После закалки и отпуска получается более легированный мартенсит, что повышает красностойкость инструмента. Однако увеличивается опасность окисления и обезуглероживания поверхностных слоев заготовки или инструмента. Поэтому обычно стремятся сокращать время нагрева стали при высоких температурах. Для повышения пластичности быстрорежущей стали перед холодной обработкой давлением (волочение, редуцирование, ротационное обжатие, прокат тонких листов, рубка, штамповка) рекомендуют термическую обработку, занимающую промежуточное место между отжигом и неполной закалкой. Сталь нагревают до 720—780 °С, выдерживают при этой температуре один час, после чего охлаждают в масле или на воздухе. Закалка.

Цель закалки — увеличить твердость инструмента, превратив исходную перлитную структуру быстрорежущей стали в мартенсит. Для этого необходимо исходный перлит превратить в аустенит, нагревая сталь до температуры аустенитных превращений. Затем сталь быстро охлаждают в масле до температуры мартенситных превращений, чтобы аустенит не превратился в промежуточные структуры. После этого охлаждение должно быть медленным, чтобы обеспечить более полный распад аустенита.

Читайте также  Ленточный станок для обработки стекла

Нагрев. Быстрорежущая сталь обладает пониженной теплопроводностью. Поэтому нагрев до закалочной температуры 1200—1300 °С необходимо осуществлять медленно, для того чтобы избежать появления закалочных трещин — следствия высоких внутренних растягивающих напряжений в сердцевине инструмента от разности объемов горячих поверхностных слоев инструмента и относительно холодной сердцевины. Инструмент сначала медленно подпревают до температуры 780—840 °С, а затем быстро нагревают до окончательной температуры. Быстрый нагрев уменьшает рост зерна стали и обезуглероживание поверхностных слоев инструмента. Крупногабаритные и фасонные инструменты подогревают дважды, сначала до 400—500 °С, а затем до 780—840 °С.

Температура окончательного нагрева, продолжительность подогрева и окончательного нагрева зависят от целого ряда факторов:

а) требуемых физико-механических свойств инструмента;

б) химсостава стали;

в) теплоемкости и теплопроводности стали,

г) продолжительности фазовых превращений и процессов растворения карбидов в аустените;

д) физических свойств нагревающей среды;

е) конфигурации и размера нагреваемого инструмента.

Поэтому режим термической обработки назначают и экспериментально проверяют не только для конкретного инструмента из стали данной марки, но и для каждого номера плавки стали этой же марки, и даже для каждого проката стали той же плавки. Установленный таким образом режим нагрева строго контролируется и поддерживается. Например, отклонение температуры нагрева допускается в пределах ± 10°С. Время выдержки при окончательном нагреве быстрорежущей стали в хлорбариевых ваннах 6—7 с на каждый миллиметр сечения инструмента, а в печах с газовой средой 10—12 с. Температура окончательного нагрева, в зависимости от марки стали, колеблется в пределах 1200—1300 °С. Уточненные значения температуры и времени выдержки при нагреве под закалку можно найти в специальной литературе, например, [14; 170]. Инженеру-механику важно знать, что повышение температуры окончательного нагрева и увеличение времени выдержки при этой температуре способствует более полному растворению карбидов. В результате после закалки и отпуска получаем более легированный мартенсит, что повышает твердость и теплостойкость инструмента. Однако при этом увеличивается опасность окисления и обезуглероживания поверхности инструмента, структура металла становится крупнозернистой, появляется ледобу- ритная сетка, что понижает прочность инструмента. Кроме того, уменьшение содержания свободных карбидов в стали вследствие их более полного растворения понижает износостойкость инструмента. Поэтому повышенные температуры нагрева и увеличенные выдержки можно рекомендовать лишь для простых инструментов, работающих с высокими скоростями, например, для резцов общего назначения. Дня сложнорежущих и мелкопрофильных инструментов, протяжек, зуборезных, резьбонарезных и других подобных инструментов такой нагрев неприемлем.

Охлаждение. Выбор метода охлаждения и охлаждающих сред зависит от состава стали, сложности инструмента и требуемых свойств.

Охлаждение до температуры мартенситного превращения следует вести быстро, чтобы аустенит не превратился в промежуточные структуры. Для каждой марки стали существует своя постоянная скорость охлаждения, а стало быть, и своя охлаждающая среда.

Охлаждение в интервале температур мартенситного превращения (300—200 °С) следует вести более медленно, так как при быстрых структурных превращениях объем металла изменяется быстро, что может явиться причиной появления трещин. Поэтому для разных марок сталей и форм инструмента чаще всего применяется комбинированное охлаждение: сначала в одной среде, а затем в другой.

Охлаждающими средами могут быть: вода, масло, расплавы и растворы солей, щелочей, воздух.

Инструменты из углеродистой стали сложной конфигурации сначала охлаждают в воде до температуры 300—250 °С, а затем в масле. Простые инструменты охлаждают только в воде.

Быстрорежущие инструменты простой формы охлаждают в масле, а небольшого поперечника (3—5 мм) даже на спокойном воздухе или под вентилятором.

Инструменты сложной формы, фасонные, подвергают ступенчатой закалке, т.е. комбинированному охлаждению, с целью снижения деформаций и возможности появления трещин. Сначала инструмент охлаждают в расплавленной калиевой селитре (хуже — в натриевой, разъедает инструмент) до температуры 500—450 °С с выдержкой при этой температуре 2—5 мин, в зависимости от сечения инструмента. Это область температур наибольшей устойчивости аустенита. Затем инструмент охлаждают на воздухе.

Для инструментов особо сложной формы, а также крупных размеров и большой длины рекомендуется изотермическая закачка, значительно уменьшающая внутренние напряжения и деформацию. При этом инструмент сначала охлаждают в соли с температурой 250—300 °С, выдерживают 40—60 мин., а затем на воздухе. Если температура соли 200—250 °С, то выдержка при этой темперагуре 30—40 мин, дальнейшее охлаждение на воздухе. Охлаждающая среда — смесь едких щелочей NaOH и КОН в различной пропорции в зависимости от требуемой температуры. Можно использовать смесь селитр KN03 (56 %) и NaN03 (44 %).

Светлая закалка. Нагрев инструмента обычный, в соляных ваннах, а охлаждение в растворе щелочей: 80 % КОН + 20 % NaOH + + 6 частей воды на 100 частей щелочей. Чтобы поверхность инструмента не была пятнистой, перед нагревом его обезжиривают в горячем растворе следующего состава: на 1 л воды 250 г NaOH и 15 г Na3PG4. Затем инструмент высушивают при температуре 400—500 °С и только после этого переносят в ванну для нагрева под закалку, так как попадание влаги в соляную ванну может вызвать взрыв и выплескивание солей. После охлаждения инструмент промывают в горячей воде для удаления солей и высушивают или сразу же отпускают. Такая промывка с просушкой предохраняет инструмент от коррозии.

Отпуск.

Нормальный отпуск. После закалки быстрорежущей стали в ее структуре остается около 20 % аустенита. В результате — пониженная твердость инструмента. Кроме того, во время работы инструмента под воздействием температуры резания аустенит как бы самопроизвольно распадается, превращаясь в мартенсит. Казалось бы, это неплохо. Но беда в том, что при таких структурных превращениях изменяется объем стали, причем только в отдельных частях инструмента. Возникают внутренние напряжения, которые, складываясь с напряжениями от действия сил резания, могут привести к поломке инструмента. Таким образом, прочность инструмента понижена. Понижена также и износостойкость, так как аустенит мягкий и быстро размазывается по детали. Поэтому оставшийся после закалки аустенит необходимо перевести в мартенсит. Этой цели служит отпуск. Закаленные инструменты загружают в печь, нагревают до 525—575 °С, выдерживают 1,0—1,5 часа и выгружают для остывания на воздухе. Так повторяют два-три раза, т.е. делают двух-, трехкратный отпуск. В это время происходит превращение остаточного аустенита в мартенсит и выделение мелкодисперсных, устойчивых против коагуляции карбидов, что вызывает дисперсионное твердение, называемое вторичной твердостью. В результате остается 2—3 % аустенита, повышается твердость инструмента на 2—3 единицы HRC3. Во время последнего отпуска окончательно снимаются внутренние напряжения, что является второй задачей отпуска. Первая задача — перевод остаточного аустенита в мартенсит.

Обработка холодом. Сразу после закалки инструмент можно обработать холодом в жидком азоте (-197 °С) или в твердой углекислоте, растворенной в бензине (-80… -100 °С). После такой обработки в стали практически не остается аустенита и можно обойтись только одним отпуском для снятия внутренних напряжений. Кроме того, обработка в жидком азоте даже готового инструмента повышает его стойкость тем значительнее, чем больше нарушен режим термообработки инструмента.

Высокий отпуск. Задние поверхности многих инструментов после закалки и отпуска не шлифуют, как, например, у стандартных фасонных фрез, резьбонарезных гребенчатых фрез, резьбонарезных плашек. Не шлифуют фасонные поверхности инструментов, если в инструментальном цехе конкретного завода по той или иной причине сделать это невозможно. Тем не менее шероховатость таких поверхностей должна быть минимальной, и ее надо обеспечить лезвийной обработкой. Для этой цели делают неполную закалку инструмента с последующим высоким отпуском, нагрев до 920—950 °С, охлаждение на воздухе или в масле и высокий отпуск при температуре 700—720 °С. После отпуска сталь имеет твердость 260—270 НВ, несколько труднее обрабатывается, но обеспечивает меньшую шероховатость обработанной поверхности.

Такой закалке с высоким отпуском подвергают также протяжки перед чистовой лезвийной обработкой, хотя после последующей нормальной закалки и отпуска их шлифуют.

Высокий отпуск делают лапкам конусов инструментов и ушкам ножовочных полотен для понижения их твердости.

Низкий отпуск. Его проводят при температурах 200—250 °С для ответственных режущих инструментов, например, внутренних протяжек, чтобы исключить их поводку во время эксплуатации под действием остаточных внутренних напряжений. Такому отпуску подвергают уже готовые инструменты или инструменты перед чистовым шлифованием.

Виды термообработки

Термическая обработка (термообработка) стали, цветных металлов — процесс изменения структуры стали, цветных металлов, сплавов при нагревании и последующем охлаждении с определенной скоростью.
Термическая обработка (термообработка) приводит к существенным изменениям свойств стали, цветных металлов, сплавов. Химический состав металла не изменяется.

Виды термической обработки стали

Отжиг

Отжиг — термическая обработка (термообработка) металла, при которой производится нагревание металла, а затем медленное охлаждение. Эта термообработка (т. е. отжиг) бывает разных видов (вид отжига зависит от температуры нагрева, скорости охлаждения металла).

Закалка

Закалка — термическая обработка (термообработка) стали, сплавов, основанная на перекристаллизации стали (сплавов) при нагреве до температуры выше критической; после достаточной выдержки при критической температуре для завершения термической обработки следует быстрое охлаждение. Закаленная сталь (сплав) имеет неравновесную структуру, поэтому применим другой вид термообработки — отпуск.

Отпуск

Отпуск — термическая обработка (термообработка) стали, сплавов, проводимая после закалки для уменьшения или снятия остаточных напряжений в стали и сплавах, повышающая вязкость, уменьшающая твердость и хрупкость металла.

Нормализация

Нормализация — термическая обработка (термообработка), схожая с отжигом. Различия этих термообработок (нормализации и отжига) состоит в том, что при нормализации сталь охлаждается на воздухе (при отжиге — в печи).

Нагрев заготовки

Нагрев заготовки — ответственная операция. От правильности ее проведения зависят качество изделия, производительность труда. Необходимо знать, что в процессе нагрева металл меняет свою структуру, свойства и характеристику поверхностного слоя и в результате от взаимодействия металла с воздухом атмосферы, и на поверхности образуется окалина, толщина слоя окалины зависит от температуры и продолжительности нагрева, химического состава металла. Стали окисляются наиболее интенсивно при нагреве больше 900°С, при нагреве в 1000°С окисляемость увеличивается в 2 раза, а при 1200°С — в 5 раз.

Хромоникелевые стали называют жаростойкими потому, что они практически не окисляются.

Легированные стали образуют плотный, но не толстый слой окалины, который защищает металл от дальнейшего окисления и не растрескивается при ковке.

Углеродистые стали при нагреве теряют углерод с поверхностного слоя в 2-4 мм. Это грозит металлу уменьшением прочности, твердости стали и ухудшается закаливание. Особенно пагубно обезуглероживание для поковок небольших размеров с последующей закалкой.

Заготовки из углеродистой стали с сечением до 100 мм можно быстро нагревать и потому их кладут холодными, без предварительного прогрева, в печь, где температура 1300°С. Во избежание появлений трещин высоколегированные и высокоуглеродистые стали необходимо нагревать медленно.

При перегреве металл приобретает крупнозернистую структуру и его пластичность снижается. Поэтому необходимо обращаться к диаграмме «железо-углерод», где определены температуры для начала и конца ковки. Однако перегрев заготовки можно при необходимости исправить методом термической обработки, но на это требуется дополнительное время и энергия. Нагрев металла до еще большей температуры приводит к пережогу, от чего происходит нарушение связей между зернами и такой металл полностью разрушается при ковке.

Пережог

Пережог — неисправимый брак. При ковке изделий из низкоуглеродистых сталей требуется меньше число нагревов, чем при ковке подобного изделия из высокоуглеродистой или легированной стали.

При нагреве металла требуется следить за температурой нагрева, временем нагрева и температурой конца нагрева. При увеличении времени нагрева — слой окалины растет, а при интенсивном, быстром нагреве могут появиться трещины. Известно из опыта, что на древесном угле заготовка 10-20 мм в диаметре нагревается до ковочной температуры за 3-4 минуты, а заготовки диаметром 40-50 мм прогревают 15-25 минут, отслеживая цвет каления.

Читайте также  Обработка чугуна на токарном станке

Химико-термическая обработка

Химико-термическая обработка (ХТО) стали — совокупность операций термической обработки с насыщением поверхности изделия различными элементами (углерод, азот, алюминий, кремний, хром и др.) при высоких температурах.

Поверхностное насыщение стали металлами (хром, алюминий, кремний и др.), образующими с железом твердые растворы замещения, более энергоемко и длительнее, чем насыщение азотом и углеродом, образующими с железом твердые растворы внедрения. При этом диффузия элементов легче протекает в решетке альфа-железо, чем в более плотноупакованной решетке гамма-железо.

Химико-термическая обработка повышает твердость, износостойкость, кавитационную, коррозионную стойкость. Химико-термическая обработка, создавая на поверхности изделий благоприятные остаточные напряжения сжатия, увеличивает надежность, долговечность.

Цементация стали

Тонкая пленка окислов железа, придающая металлу различные быстро меняющиеся цвета — от светло-желтого до серого. Такая пленка появляется, если очищенное от окалины стальное изделие нагреть до 220°С; при увеличении времени нагрева или повышении температуры окисная пленка утолщается и цвет ее изменяется. Цвета побежалости одинаково проявляются как на сырой, так и на закаленной стали.

При низком отпуске (нагрев до температуры 200-300° ) в структуре стали в основном остается мартенсит, который, однако, изменяется решетку. Кроме того, начинается выделение карбидов железа из твердого раствора углерода в альфа-железе и начальное скопление их небольшими группами. Это влечет за собой некоторое уменьшение твердости и увеличение пластических и вязких свойств стали, а также уменьшение внутренних напряжений в деталях.

Для низкого отпуска детали выдерживают в течение определенного времени обычно в масляных или соляных ваннах. Если для низкого отпуска детали нагревают на воздухе, то для контроля температуры часто пользуются цветами побежалости, появляющимися на поверхности детали.

табл.1

Цвет побежалости Температура, °С Инструмент, который следует отпускать
Бледно-желтый 210
Светло-желтый 220 Токарные и строгальные резцы для обработки чугуна и стали
Желтый 230 Тоже
Темно-желтый 240 Чеканы для чеканки по литью
Коричневый 255
Коричнево-красный 265 Плашки, сверла, резцы для обработки меди, латуни, бронзы
Фиолетовый 285 Зубила для обработки стали
Темно-синий 300 Чеканы для чеканки из листовой меди, латуни и серебра
Светло-синий 325
Серый 330

Появление этих цветов связано с интерференцией белого света в пленках окисла железа, возникающих на поверхности детали при ее нагреве. В интервале температур от 220 до 330 ° в зависимости от толщины пленки цвет изменяется от светло-желтого до серого. Низкий отпуск применяется для режущего, измерительного инструмента и зубчатых колес.

При среднем (нагрев в пределах 300-500°) и высоком (500-700°) отпуске сталь из состояния мартенсита переходит соответственно в состояние тростита или сорбита. Чем выше отпуск, тем меньше твердость отпущенной стали и тем больше ее пластичность и вязкость.

При высоком отпуске сталь получает наилучшее сочетание механических свойств, повышение прочности, пластичности и вязкости, поэтому высокий отпуск стали после закалки ее на мартенсит назначают для кузнечных штампов, пружин, рессор, а высокий — для многих деталей, подверженных действию высоких напряжений (например, осей автомобилей, шатунов двигателей).

Для некоторых марок стали отпуск производят после нормализации. Этот относится к мелкозернистой легированной доэвтектоидной стали (особенно никелевой), имеющий высокую вязкость и поэтому плохую обрабатываемость режущим инструментом.

Для улучшения обрабатываемости производят нормализацию стали при повышенной температуре (до 950-970°), в результате чего она приобретает крупную структуру (определяющую лучшую обрабатываемость) и одновременно повышенную твердость (ввиду малой критической скорости закалки никелевой стали). С целью уменьшения твердости производят высокий отпуск этой стали.

Дефекты закалки

К дефектам закалки относятся:

  • трещины,
  • поводки или коробление,
  • обезуглероживание.

Главная причина трещин и поводки — неравномерное изменение объема детали при нагреве и, особенно, при резком охлаждении. Другая причина — увеличение объема при закалке на мартенсит.

Трещины возникают потому, что напряжения при неравномерном изменении объема в отдельных местах детали превышают прочность металла в этих местах.

Лучшим способом уменьшения напряжений является медленное охлаждение около температуры мартенситного превращения. При конструировании деталей необходимо учитывать, что наличие острых углов и резких изменений сечения увеличивает внутреннее напряжение при закалке.

Коробление (или поводка)возникает также от напряжений в результате неравномерного охлаждения и проявляется в искривлениях деталей. Если эти искривления невелики, они могут быть исправлены, например, шлифованием. Трещины и коробление могут быть предотвращены предварительным отжигом деталей, равномерным и постепенным нагревом их, а также применением ступенчатой и изотермической закалки.

Обезуглероживание стали с поверхности — результат выгорания углерода при высоком и продолжительном нагреве детали в окислительной среде. Для предотвращения обезуглероживания детали нагревают в восстановительной или нейтральной среде (восстановительное пламя, муфельные печи, нагрев в жидких средах).

Образование окалины на поверхности изделия приводит к угару металла, деформации. Это уменьшает теплопроводность и, стало быть, понижает скорость нагрева изделия в печи, затрудняет механическую обработку. Удаляют окалину либо механическим способом, либо химическим (травлением).

Выгоревший с поверхности металла углерод делает изделия обезуглероженным с пониженными прочностными характеристиками, с затрудненной механической обработкой. Интенсивность, с которой происходит окисление и обезуглерожевание, зависит от температуры нагрева, т. е. чем больше нагрев, тем быстрее идут процессы.

Образование окалины при нагреве можно избежать, если под закалку применить пасту, состоящую из жидкого стекла — 100 г, огнеупорной глины — 75 г, графита — 25 г, буры — 14 г, карборунда — 30 г, воды — 100 г. Пасту наносят на изделие и дают ей высохнуть, затем нагревают изделие обычным способом. После закалки его промывают в горячем содовом растворе. Для предупреждения образования окалины на инструментах быстрорежущей стали применяют покрытие бурой. Для этого нагретый до 850°С инструмент погружают в насыщенный водный раствор или порошок буры

Антикоррозионная обработка изделий после термической обработки

После термической обработки, связанной с применением солей, щелочей, воды и прочих веществ, могущих вызывать при длительном хранении изделий коррозию, следует провести антикоррозионную обработку стальных изделий, заключающуюся в том, что очищенные, промытые и высушенные изделия погружают на 5 минут в 20 — 30% водный раствор нитрита натрия, после чего заворачивают в пропитанную этим же раствором бумагу.
В таком виде изделия могут храниться длительное время

Термическая обработка стали (металлов): что это такое, основные виды и описание

Разновидности металлических веществ имеют различную степень прочности, склонность к коррозии и прочим химическим реакциям. С помощью нагрева можно добиться от заготовки необходимых свойств, улучшить износостойкость, подготовить к дальнейшим процедурам в ходе металлообработки. В статье расскажем про термическую обработку деталей из стали – что это такое, какие основные виды термообработки металлов бывают.

Назначение технологического процесса

Работать можно как с заготовками, так и с готовыми изделиями. У первых снимается внутреннее напряжение после различных типов литья и штамповки, материал становится более пластичным, с ним намного проще работать, особенно резать его. Если обрабатывается целая деталь, то преследуются цели:

  • повышение прочности;
  • защита от преждевременного ржавления;
  • увеличение стойкости к температурным перепадам, становится больше верхний и нижний порог температур, при которых можно использовать предмет;
  • продление потенциальной длительности эксплуатации.

Особенности термической обработки

Процесс затрагивает не только внешние физические характеристики, но и изнутри изменяет химическое строение. Меняется форма кристаллической решетки в ходе вторичной кристаллизации сплава, то есть под воздействием высокого жара происходит расплавление, а затем охлаждение и снова застывание, но уже с другими свойствами. Железо накаляется и происходит смена разряда из категории «альфа» в «гамма», при этом ранее разрозненные частицы объединяются в пластины.

Преимущества технологии

Этот процесс применяется повсеместно на многих предприятиях – каждое второе производство металлической продукции требует теплового воздействия. Это обусловлено достоинствами:

  • Работать можно со сталью, цветными металлами и сплавами – широкий спектр.
  • Увеличение срока годности изделия.
  • Снижение уровня абразивного износа.
  • Намного меньше становится процент брака на производственных цехах.
  • Экономия средств, так как с термообработанной заготовкой проще проводить ряд манипуляций.

Принципы обработки

Главное правило – время, затраченное на одну деталь равняется длительности нагрева материала в зависимости от его предельной температуры, периоду выдержки и охлаждению. Суммарный подсчет позволяет вычислить итоговое временное значение. Каждый из этих пунктов зависит от:

  • габаритов заготовки;
  • вида металла, подвергаемого термообработке;
  • мощности печи.

От всего этого зависит, как скоро произойдут преобразования.

Классификация

Все разновидности используются с различными целями, с разными материалами. Для этого остается прежней технология – нагрев, выдержка, остужение, но при этом меняется время каждого из этапов. Особенности представлены в видео:

Отпуск

При первичной обработке, например, при литье, все металлы получают внутреннее напряжение – это особый, тесный вид соприкосновения молекул. Напряженность приводит к повышенной хрупкости. Процедура позволяет добиться ударопрочности и снижения жесткости. Есть три подвида.

Низкий

Основная задача – повышение вязкости при той же твердости. Это достигается путем придания внутренней микроструктуры игольчатого или пластиночного типа. Часто применяют для термической обработки режущих деталей, медицинских инструментов. Заготовку нагревают в пределах 150-250 градусов. Выдерживают не менее полутора часов, а затем остужают с помощью воздуха или масла.

Средний

Здесь мартенсит (вид структуры, описанный выше) преобразуется в трустит, что характерно для чугуна. Особенность – высокая дисперсия. При такой же высокой вязкости твердость тоже растет. Это очень важно для элементов, на которые будут возлагаться большие упругие нагрузки. Температурные пределы – от 340 до 500, воздушное охлаждение.

Высокий

Кристаллизация происходит с появлением сорбита. Благодаря ему совершенно ликвидируется напряжение внутри сплава. Такой метод применяется для конструкций, имеющих очень важное значение – в самолетостроении, при строении космических объектов. Температура нагрева – от 450 до 650 градусов.

Отжиг

Операцию проводят для получения требуемой равновесной структуры с минимальной твердостью, с целью дальнейшей металлообработки получаемых изделий резанием. С особенностями вас познакомит видео:

Общее определение и виды

При отливе или прочих первичных процессах обработки помимо напряжения появляются дефекты. Убрать эти изменения и добиться однородной структуры кристаллической решетки можно с помощью следующего алгоритма действий:

  • нагрев – необходимо немного превысить критическую отметку для этой разновидности стали;
  • определенный период требуется держать стабильный температурный режим;
  • следует медленно остудить заготовку вместе с печью.

У отжига есть следующие разновидности.

Гомогенизация

Относится к первому роду, когда изменения считаются незначительными. Задача подобной манипуляции – убрать неоднородность структуры, привести ее к однообразию. При этом следует нагревать изделие в температурном режиме от 1000 до 1150 градусов, затем выдерживать около 8-15 часов и постепенно снижать нагрев, охлаждая заготовку кислородом.

Рекристаллизация

Тоже разновидность 1 фазы отжига. Задача процедуры – привести все кристаллы в единый вид, а также снять внутреннее напряжение металла. Существует два подвида:

  • смягчающий – обычно используется в качестве финальной обработки, подразумевает улучшение пластических характеристик;
  • упрочняющий – увеличивает упругость, особенно актуально для закалки пружин.

Температура выбирается в зависимости от сплава, обычно на 100-200 градусов выше, чем точка рекристаллизации. Час или два необходимо поддерживать температурный режим, чтобы потом дать остывать не спеша.

Изотермический отжиг

Цель – достижение высокотемпературной гранецентрированной модификации железа (распад аустенита) для его смягчения. При этом получается более однородная структура изделия. Чаще такой тип металлообработки применяют к небольшим штамповкам, потому что их можно без проблем подвергнуть быстрому охлаждению. Процесс:

  • нагрев на 20-30 градусов больше предела материала;
  • непродолжительное выдерживание;
  • быстрое остывание – это преимущество перед прочими подвидами.

Для устранения напряжений

Это операция удаления, снятия негативного внутреннего состояния излишней твердости, из-за которой металл становится хрупким и недолговечным. Он быстро деформируется от внешних физических воздействий. Процесс подразумевает температуры от 700 до 750, затем небольшое охлаждение до 600 и выдержку до 20 часов, затем под воздействием воздуха медленное остужение.

Отжиг полный

Применяется для создания пластичной, однородной мелкозернистой структуры. Наиболее характерный метод промежуточного воздействия на металлопрокат – после литья, ковки, штамповки и до резания любым способом. Этапы:

  • нагрев на 30-50 больше предела стали;
  • выдерживание;
  • очень медленное остывание вместе с печью – в 60 минут не более 50-150 градусов.

Неполный

Значительные преобразования на уровне кристаллической решетки отсутствуют, но придается твердость ранее пластичным материалам. Это особенно нужно конструкциям, образованным методом сварных соединений, а также инструментам, которым нужна особенная прочность. Метод предполагает температуру около 700, и спустя 20 часов постепенное охлаждение.

Закалка, как основной вид термической обработки стали

Очень распространенный метод термообработки, так как он позволяет сделать изделие менее восприимчивым к сжатию, сдвигу, а также придать ему прочность и долговечность, невосприимчивость к внешним физическим воздействиям. Это происходит за счет придания игольчатой структуры металлу. «Иглами» вещество застывает из-за недостатка легирующих материалов.

Заготовку сильно прогревают, а потом охлаждают максимально быстро, используя внешние источники – воду, масло, раствор с добавлением соли. Из-за скорости в полурасплавленном сплаве не успевают произойти диффузионные процессы. Дешевле всего создавать водяные ванны, но на поверхности могут появиться трещины, масляная среда – самая предпочтительная.

Нормализация

Цели – устранение крупнозернистости, напряженности стали, улучшение качеств для дальнейшей обработки. Задачи и процесс напоминают полный отжиг, есть одно отличие – остывание происходит не в печи с возможностью контролировать температуру, а в условиях обычного воздуха.

Криогенная термообработка

Еще один термальный способ воздействия, но без нагрева. Изделие помещают в холодильную установку, иногда ей является целый цех при крупногабаритных конструкциях. Низкие температуры и последующее согревание снижает риск коррозии, продлевает срок эксплуатации, увеличивая прочность.

Химико-термическая обработка

Второе название – цементация или ХТО. Обрабатывается только внешний слой посредством нанесения на него химикатов в определенном температурном режиме. Среда может быть различной – газ, порошки, жидкости. Чаще всего используют углерод или азот.

Термомеханическое воздействие

ТМО пользовались еще кузнецы в древности. Это любые пластичные деформации (удары, сжатия), производимые посредством нагревания всего изделия или элемента. Его обычно сочетают с закаливанием, то есть после деформирования быстро охлаждают.

Закаливаемость и прокаливаемость стали

Этими показателями определяются результаты всех вышеперечисленных процедур. Первый термин – это твердость, которая напрямую связана с количеством углерода, а второй – это глубина закалки, то есть какой верхний слой был подвергнут изменениям.

Способы охлаждения

Есть несколько сред, в которых можно снимать температуру:

  • воздух;
  • жидкость;
  • расплавленная соль;
  • масло;
  • соляной раствор;
  • комбинирование вышеперечисленных веществ.

Выбирается в зависимости от разновидности термообработки.

Вывод

Это один из самых часто встречаемых на производстве методов металлообработки, без него часто не приступают к горячей штамповке, к резке. Мы перечислили все основные виды термической обработки металлов и сплавов, их особенности, а в качестве завершения статьи посмотрим несколько видео:

Чтобы уточнить интересующую вас информацию, свяжитесь с нашими менеджерами по телефонам 8 (908) 135-59-82; (473) 239-65-79; 8 (800) 707-53-38. Они ответят на все ваши вопросы.

Термическая обработка стали

Термическая обработка стали – процесс температурного воздействия на материал. Решение о выборе способа термической обработки применяется на основании анализа стоящей задачи, а также особенностей марки стали.

Термическая обработка стали – это процесс температурного воздействия на материал. Он позволяет поменять размеры зерен внутри металла, то есть изменить его характеристики, улучшить.

При обработке применяется сразу несколько методов. Металл нагревают, выдерживают при определенной температуре и равномерно охлаждают. Делать это можно на разных этапах, как с заготовками, так и с уже готовыми изделиями.

Метод используется для достижения следующих целей:

  • значительное увеличение прочности и износостойкости;
  • защита материала от последующего воздействия высоких температур;
  • снижение риска появления коррозии;
  • устранение внутреннего напряжения в заготовках;
  • подготовка материала к последующей обработке, увеличение его пластичности.

Решение о выборе способа термической обработки применяется на основании анализа стоящей задачи, а также особенностей марки стали. Можно использовать материалы любого качества.

Сталь должна соответствовать трем основным требованиям:

  • относиться к категории инструментальных, конструкционных или специальных;
  • быть по составу легированной или углеродистой;
  • содержать не более 0,25% углерода для низкоуглеродистых сплавов и менее 0,7 % для высокоуглеродистых.

Рассмотрим, какие способы применяются в работе, их особенности и другие параметры, влияющие на результат и уровень качества.

Отпуск

Часто применяется в машиностроении, а также при изготовлении деталей разного назначения из стальных заготовок. Обычно используется с закалкой, потому что помогает снизить внутреннее напряжение материала. Это делает сырье значительно прочнее, снимает хрупкость, которая может появиться при воздействии повышенных температур.

Еще одна цель применения – увеличение показателей ударной вязкости. Материал становится менее жестким, а значит, при сильном внешнем механическом воздействии его будет сложно повредить.

Технология отпуска разделена на три типа:

  • Низкий. Технология используется для создания мартенситной структуры металла. Главная цель – значительно увеличить вязкость сырья и при этом сохранить его твердость.

Максимальная температура нагрева – до 250 °С. Обычно она составляет не более 150 °С. При таком нагреве сталь нужно будет держать около полутора часов. Охлаждение проводится внутри масла или воздуха, что помогает также упрочнить заготовку или готовое изделие.

Чаще всего низкий отпуск применяется при создании измерительного инструмента или разных типов режущих изделий.

  • Средний. Отличие заключается в повышении максимальной температуры до 500 °С. Обычно детали обрабатываются при нагреве до 340 °С. Применяется воздушное охлаждение.

Главная задача среднего отпуска – перевести мартенсит в троостит. Это обеспечивает рост вязкости на фоне понижения твердости. Технология пригодится, если планируется производить детали, работающие под сильными нагрузками.

  • Высокий. Одно из наиболее успешных средств, позволяющих снизить высокий уровень внутренней напряженности. Изделие прогревается до высоких температур, что помогает создать и нарастить вязкость и пластичность без потери прочности. Хотя методика сложна в использовании для ответственных деталей, она оптимальна. Диапазон нагрева – 450-650°С.

Отжиг

Метод применяется для стабилизации внутренней структуры материала и увеличения ее однородности. Это также помогает сильно уменьшить уровень напряжения. Технологический процесс предполагает нагрев до высоких температур, выдержку и длительное, медленное охлаждение.

В промышленности используется несколько основных подходов:

  • Гомогенизация. Ее также называют диффузионным отжигом. Это процесс термообработки стали в диапазоне температур от 1000 до 1150 °С. В таком состоянии сырье держится на протяжении 8 часов. Для некоторых марок стали время увеличивается до 15. Температура остывания контролируется. Из печи заготовку можно вытаскивать только при достижении 800°С. Далее температура естественно снижается на воздухе.
  • Рекристаллизация. Это низкий отжиг, необходимый после проведения деформации. Главная задача – сделать материал значительно прочнее путем изменения формы зерна во внутренней структуре. Температурный диапазон составляет 100-200 °С. По сравнению с гомогенизацией, длительность выдерживания сильно уменьшилась – до двух часов. Медленное остывание проходит внутри печи.
  • Изометрическое воздействие. Подходит только для легированных сталей. При создаваемом состоянии аустенит постепенно распадается. Температура зависит от природного максимума для конкретной марки металла. Предел должен быть превышен на 20-30°С. Остывание проходит в два этапа – быстрый и медленный.
  • Избавление от внутреннего и остаточного напряжения. Методика подойдет после того, как деталь проходит механическую обработку, сваривается или обрабатывается с использованием литья. Максимальная температура нагрева составляет 727°С. У этого процесса самый длительный период выдерживания среди всех разновидностей отжига –20 часов. Заготовка будет остывать очень медленно.
  • Полный. Если вам нужно достичь мелкозернистой структуры материала с преобладанием перлита и феррита. Методика подойдет для разных типов заготовок – от штампованных и литых до кованных. Метод нагревания здесь такой же, как у изометрического отжига – прогрев выполняется до предельной точки и еще на 30-50°С выше него. Охлаждение проводится до 500°С. Секрет качественного выполнения операции в том, чтобы контролировать скорость остывания. Она указывается из расчета на 60 минут. Для углеродистой стали остывание должно быть менее 150°С, а для легированной – 50°С.
  • Неполный. Основной задачей проведения неполного отжига является перевод перлита в ферритно-цементитную структуру. Технология подойдет для деталей, которые были созданы методом электродуговой сварки. При этом температура составляет 700°С, а длительность выдержки – 20 часов. После медленного охлаждения можно использовать заготовку – ее прочность и защита от повреждения значительно увеличатся.

Закалка

Закалка и отпуск стали являются одними из наиболее распространенных режимов термической обработки.

Такой вариант воздействия нужен, чтобы нарастить важные показатели материала – от твердости и максимальной упругости до защиты от износа и твердости. При помощи закалки удается уменьшить предел на сжатие и пластичность.

Такой формат обработки является одним из наиболее старых. Он основывается на быстром охлаждении прогретого до высоких температур металла. Предел нагрева отличается в зависимости от типа сплава. Нужно учитывать, при какой температуре начинает изменяться внутренняя кристаллическая решетка.

В зависимости от марки стали меняется несколько основных параметров:

  • Среда охлаждения. Самый простой способ – окунание в воду. Дополнительные полезные свойства позволяют получить применение технического масла, газов инертного типа и растворов с высоким уровнем содержания соли.
  • Скорость охлаждения. Меняется в зависимости от изначальной степени прогрева. Температура воды, соляного раствора или газа также может отличаться.
  • Нагрев. Выбирается в зависимости от пределов, нужных для изменения внутренней структуры. Для многих видов сырья этот показатель составляет около 900°С.

Нормализация

Процесс нормализации необходим для того, чтобы изменить структуру и создать внутри металла мелкое зерно. Этот вариант подходит как для легированных, так и для низкоуглеродистых сталей.

Главное преимущество технологии позволяет довести твердость до 300 НВ. Вы сможете использовать полученные горячекатаным методом заготовки, а также нарастить прочность, защиту от излома и вязкость. Это позволяет упростить процесс последующей обработки.

В качестве среды охлаждения используется воздух. Максимальные температуры нагрева – не более 50°С сверх установленного для материала предела.

Криогенная термообработка

Основы термической обработки стали криогенного типа заключаются в значительном охлаждении ранее закаленных заготовок. Главная цель использования – прекращение мартенситного преобразования.

Как и в случае с другими перечисленными средствами, заготовку потребуется постепенно прогреть до стандартной температуры.

Химико-термическая обработка

В ходе обработки происходит преобразование внешнего слоя материала. Это позволяет повысить твердость, защитить сырье от коррозии и дополнительно нарастить износостойкость.

В процессе могут использоваться следующие методы:

  • Цементация. Также называется науглероживанием. Поверхность насыщается углеродом. Сначала проводится термическая обработка, участки, которые не планируется обрабатывать, обмазываются защитными составами. Процедура проводится в диапазоне 900-950°С.
  • Азотирование. В отличие от цементации вместо углерода применяется азот. Для этого создается нагретая аммиачная среда. Температурный диапазон составляет 500-520°С.
  • Цианирование. Применяется как углерод, так и азот в разных соотношениях в зависимости от температуры. Процесс возможен как в газовой, так и в жидкой среде.
  • Хромирование. Один из видов металлизации. Назван так по основному веществу, которым насыщается материал (хром). Улучшает прочность, коррозийную стойкость, внешний вид детали.

Технология выбирается с ориентиром на особенности и характеристики конкретного типа сплава.