Обработка тонкостенных деталей на токарных станках

Токарная обработка тонкостенных деталей

Токарная обработка тонкостенных деталей

Токарная обработка тонкостенных деталей – не проблема для ООО “Токарная обработка” на okuma B400, 16К20, 1К63, ДИП500 и токарных автоматах. От 3х дней. Есть закалка, гальваника. Отправьте запрос с чертежами на электронную почту: [email protected]

Токарная обработка тонкостенных деталей

Наше предприятие имеет огромный опыт работы в сфере металлообработки. Мы предлагаем услуги по токарной обработке тонкостенных деталей из различного материала.

Для расчета стоимости токарной обработки тонкостенных деталей пошлите запрос с чертежами на электронную почту [email protected] Ответим на любые вопросы 8 3439 38 00 81, 8 3439 38 98 01, доставка по всей России.

Технология токарной обработки тонкостенных деталей.

Данный технологический процесс имеет ряд существенных сложностей, ведь тонкостенные детали легко подвергаются деформации. Наши специалисты учитывают все тонкости при установке заготовок на станки. Малейшая деформация может очень сильно повлиять на точность токарной обработки деталей, поэтому мы используем самый современный подход для решения этой проблемы. Наше оборудование оснащено специальными зажимными устройствами, которые позволяют максимально распределить зажимные усилия. Регулировка зажимного усилия, прежде всего, учитывается при обработке тонкостенных деталей.

Наши высококвалифицированные специалисты, выполняя токарную обработку тонкостенных деталей, часто используют специальные цанговые патроны, разжимные оправки и сегментные кулачки. При обработке учитываются все показатели. Центробежная сила, которая возникает при осуществлении токарных операций, может способствовать ослаблению зажимного усилия на наружный диаметр заготовки. Такое воздействие обязательно необходимо учитывать для получения деталей высокого качества. Также наши специалисты учитывают и тот факт, что при остановке детали, центробежные силы исчезают, и соответственно зажимное усилие возрастает, что в свою очередь может привести к возникновению деформации. Сильно понижать зажимное усилие тоже нельзя, ведь это просто небезопасно, так как заготовка не будет надежно закреплена. В свою очередь, слабое зажимное усилие может привести к вылету заготовки из патрона в процессе обработки и даже вывести из строя современное дорогостоящее оборудование.

Наши специалисты используют не только цанговые патроны и разжимные оправки, применение которых требует дополнительных финансовых затрат и перенастройку оборудования. Мы используем специальные кулачки, которые изготовлены из стеклотекстолита. Они по своей сути являются обычными зажимными кулачками, которые оснащены специальными накладками из стеклотекстолита. Чтобы снизить воздействие центробежных сил, такие кулачки изготавливают из легковесных сплавов. Имеющиеся на них накладки сделаны из армированного стекловолокна залитого пластиком. Использование таких зажимных кулачков позволяет исключить возможность возникновения следов на поверхности детали от зажимного усилия. Патроны имеют большой угол обхвата детали, что максимально исключает деформацию тонкостенных деталей. Применяемые кулачки имеют большой коэффициент трения, за счет этого обеспечивается отличная передача крутящего момента, учитывая даже небольшое зажимное усилие. Мы используем два размера таких накладок для кулачков: 5 и 10 см. Любая накладка может быть расточена нашими специалистами для токарной обработки тонкостенной детали определенного диаметра. При использовании таких кулачков, мы можем обрабатывать детали до 230 мм в диаметре.

Оборудование для обработки тонкостенных деталей.

На нашем предприятии также имеется оборудование для токарной обработки тонкостенных деталей, которое оснащено специальными маятниковыми кулачками. Патроны с такими кулачками имеют специальное коромысло, на которое в точках опоры устанавливают специальные накладки, имеющие рифленую поверхность или растачиваемые сырые накладки. Использование маятниковых кулачков позволяет максимально распределить зажимное усилие и увеличить площадь зажима. Такой подход обеспечивает эффективность обработки тонкостенных деталей и исключает возникновение брака. На нашем оборудовании мы можем смело устанавливать заготовки для обработки черновых поверхностей и уже обработанные детали. При использовании маятниковых кулачков, мы можем производить токарно-фрезерную обработку деталей с диаметром до 50 см.

Также на нашем предприятии имеется современное оборудование, которое оснащено патронами с шестью кулачками, которые двигаются попарно. Парные кулачки связаны между собой маятниковыми мостами. Использование таких патронов позволяет максимально отцентрировать заготовку. При блокировке маятникового моста, патрон начинает функционировать как самоцентрирующийся. Использование 6-ти кулачковых патронов существенно снижает риски возникновения деформации за счет распределения зажимного усилия по шести точкам соприкосновения с деталью.

Все наши клиенты всегда своевременно получают изготовленные нами тонкостенные детали высокого качества в установленные сроки. Использование современного оборудования оснащенного числовым программным управлением позволяет максимально автоматизировать процесс и сократить машинное время. За счет этого мы можем снизить стоимость изготовления тонкостенных деталей. Любой клиент может всегда рассчитывать на получение консультаций от наших специалистов по любым техническим вопросам.

Режимы токарной обработки тонкостенных деталей на токарном станке

Режимы токарной обработки тонкостенных деталей важны для изучения, по причине того, что они занимают значительную долю в номенклатуре промышленных изделий. Расчет режимов резания при токарной обработке может вызвать определенные сложности, обусловленные их деформацией под действием сил резания и закрепления. Анализ литературных источников по обработке таких деталей показывает, что для преодоления этой проблемы обычно используются специальные станочные приспособления, повышающие жесткость системы «станок — приспособление – инструмент — деталь» до уровня, отвечающего требованиям к точности изготавливаемой детали. Недостатками такого подхода является увеличение сроков технологической подготовки производства, а также повышение производственных затрат, обусловленных проектированием приспособлений, их изготовлением и эксплуатацией. Перечисленные издержки особенно ощутимы в единичных и мелкосерийных производствах (самолетостроение, ракетостроение, судостроение и др.), в которых упомянутые производственные затраты значительно повышают себестоимость изготавливаемых деталей.

В этой связи представляется целесообразным поиск и изучение альтернативных возможностей преодоления проблемы податливости тонкостенных деталей, например, путем разработки вариантов которые «смягчат» режимы резания при токарной обработке, в результате которых деформация деталей не будет превышать допустимых значений. Обзор публикаций и литературы показывает, что данная тема недостаточно полно раскрыта. В связи с этим, целью настоящей работы является оценка реализуемости возможностей механической обработки нежёстких деталей с допустимыми технологическими деформациями, применяя при этом стандартные приспособления и специальные режимы обработки на токарном станке.

Метод исследования и постановка задач

Метод исследования — числовое моделирование деформации тонкостенных деталей под действием сил резания и сил закрепления. Ожидаемым результатом работы является выявление общего характера и масштабов деформации деталей, обрабатываемых на токарных станках. В работе решались следующие задачи:

  1. Формирование номенклатуры деталей, представляющих типичные классы тонкостенных деталей типа тел вращения.
  2. Исследование, как влияют режимы резания при токарной обработке на станках с описанием типовых схем силового нагружения деталей при их обработке в стандартных приспособлениях.
  3. Моделирование деформации обрабатываемой детали под действием технологических нагрузок, выявление общей топологии деформационных полей и определение значений упругих деформаций обрабатываемой поверхности деталей.
  4. Анализ полученных результатов по влиянию силовых технологических нагрузок на упругую деформацию деталей применяя разные режимы токарной обработки.

В конечном итоге, настоящая работа направлена на количественное оценивание необходимости и принципиальной возможности использования специальных режимов резания, обеспечивающих обработку тонкостенных деталей с требуемой размерной точностью без применения индивидуально создаваемых для этого станочных приспособлений.

Исходные данные, ограничения и допущения

  • 1. Настоящее исследование ограничивается рассмотрением случаев обработки деталей на токарных станках, при которых деталь нагружается силой резания и силами закрепления от инструмента и зажимных кулачков токарного патрона. При этом, делается допущение о том, что приложение технологических нагрузок к детали носит точечный характер.
  • 2. В качестве объекта исследования выбраны два класса нежёстких деталей токарной группы — детали класса «Труба» (Т), и детали класса «Диск» (Д), представленные на Рис. 1. Классы деталей Т и Д заданы семейством из девяти деталей-представителей (Т1.1…Т3.3 и Д1.1…3.3), охватывающих размерный диапазон, типичный для деталей данных классов (табл. 1).
Читайте также  В технике пропильной обработки металла можно сделать

Рис. 1. Эскиз деталей и классов Т и Д.

SСHUHK: базирование и закрепление тонкостенных деталей

Обработка тонкостенных деталей связана с рядом сложностей, одна из которых – деформация детали при закреплении на станке. Деформации влияют на точность детали после обработки. Существуют стандартные пути решения этой проблемы: это распределение зажимного усилия за счет увеличения числа точек приложения или за счет увеличения площади контакта, регулировка зажимного усилия.

Основными стандартными решениями в этом случае до недавнего времени считались сегментные кулачки и применение разжимных оправок или цанговых патронов. Эти решения имеют существенные недостатки.

Сегментные кулачки имеют большие размеры и вес, соответственно, велики и возникающие в процессе обработки центробежные силы. В процессе обработки, например, при зажиме детали за наружный диаметр, кулачки под действием центробежной силы стремятся разойтись, и зажимное усилие должно быть достаточно для противодействия центробежной силе. Даже если до обработки при зажиме детали деформаций не возникало, то после снятия припуска, при остановке станка, центробежная сила исчезнет, а кулачки под действием зажимной силы сойдутся – велик риск возникновения деформаций.

Снижение зажимного усилия опасно, во-первых, с точки зрения безопасности процесса, поскольку его может оказаться недостаточно для надежного закрепления заготовки, и в этом случае можно не только лишиться заготовки, но и вывести из строя дорогостоящее оборудование.

Применение цангового патрона или разжимной оправки ограничено по зажимному диаметру, и кроме этого данное решение требует больших финансовых затрат на приобретение и временных затрат на переналадку станка.

На сегодняшний день компания SCHUNK предлагает несколько более эффективных стандартных решений для зажима тонкостенных заготовок.

Кулачки из стеклотекстолита

Сегодня компания SCHUNK – единственный производитель на мировом рынке, который предлагает своим клиентам кулачки из стеклотекстолита Quentes в стандартной программе поставок. Конструктивно эти кулачки представляют собой сборную конструкцию, которая состоит из базовых кулачков и накладок из стеклотекстолита. Базовые кулачки изготавливаются из алюминия для облегчения конструкции и снижения центробежной силы.

Накладки изготовлены из армированного стекловолокном пластика и позволяют производить зажим детали по окончательно обработанным поверхностям без следов от зажима. Снижение деформаций тонкостенной детали обеспечивается, во-первых, благодаря большому углу охвата расточенного кулачка Quentes и, во-вторых, благодаря высокому коэффициенту трения. Коэффициент трения стеклопластика, применяемого для изготовления накладок Quentes, составляет 0,3 – 0,4, за счет чего возможна передача высокого крутящего момента при малом зажимном усилии.

Накладки Quentes могут быть поставлены в двух типоразмерах шириной 50 и 100 мм для зажима деталей разного диаметра или для зажима по наружному или внутреннему диаметру. Накладки могут быть расточены под определенный диаметр. Замена изношенных зажимных насадок Quentes происходит просто, быстро и недорого. Стандартно кулачки Quentes позволяют зажимать детали до 230 мм.

Маятниковые кулачки

Одно из старейших эффективных решений для зажима тонкостенных деталей, предлагаемых компанией SCHUNK, – маятниковые кулачки.

Конструкция данных кулачков представляет собой жесткую опору, на которой установлено коромысло, имеющее возможность перемещения в пределах 1–3°. На крайних точках коромысла устанавливаются либо закаленные накладки с рифлением, либо сырые растачиваемые накладки.

Данное решение позволяет обеспечить на стандартном 3-кулачковом патроне равномерное распределение зажимного усилия за счет увеличения числа точек контакта (6х60°) и за счет увеличения площади зажима. Это позволяет снизить зажимное усилие и повысить передаваемый крутящий момент и тем самым значительно снизить деформации детали.

Кроме этого данное решение подходит для зажима как предварительно обработанной детали, так и детали с черновыми поверхностями, например, отливки, в этом случае все неровности компенсируются за счет качания коромысла.

SCHUNK – единственный в мире производитель стандартных маятниковых кулачков.Стандартно данные кулачки позволяют зажимать заготовки до 500 мм в зависимости от типа токарного патрона.

Шестикулачковые токарные патроны

Токарные патроны ROTANCR 6-кулачковые патроны ROTANCR – уникальное техническое решение для эффективного зажима тонкостенных деталей. Конструкция данного патрона основана на движении попарно качающихся зажимных кулачков. Два базовых кулачка всегда попарно связаны друг с другом маятниковым мостом. Это позволяет повысить точность центрирования заготовки. Если маятниковый мост заблокировать, то патрон будет работать как самоцентрирующий. Кроме этого за счет равномерного распределения зажимного усилия по 6 точкам снижаются деформации.

Пример: сравнение деформаций при зажиме стальной заготовки в 6-кулачковом патроне ROTANCR и стандартном 3-кулачковом патроне при одинаковом зажимном усилии. Из диаграммы измерения круглости детали видно, что при прочих равных условиях круглость детали после обработки в 6-кулачковом патроне ROTANCR в 4–5 раз лучше, чем при обработке в эквивалентном 3-кулачковом патроне.

Токарные патроны ROTANCS

Концепция 6-кулачкового патрона с качающимися кулачками нашла развитие в серии патронов ROTANCS. Это полностью герметичные токарные патроны с эффектом притягивания обрабатываемой детали к базе. Патрон позволяет не только сцентрировать заготовку с высокой точностью за счет попарно качающихся кулачков, снизить деформации детали за счет равномерного распределения зажимного усилия, но и обеспечить минимальное радиальное и торцевое биение детали за счет эффекта притягивания.

Пример: мировой лидер в производстве подшипников после твердой обработки наружного кольца железнодорожного подшипника получил радиальное и торцевое биение в пределах 3 мкм, а параллельность стенок в пределах 2 мкм. Обработка проводилась за один установ.

Описанные решения стандартны для компании SCHUNK, однако возможно проектирование и изготовление на их базе и специальных решений. Ответы на ваши вопросы, решения для специальных задач можно получить в официальном представительстве компании SCHUNK в России.

Токарная обработка металла — все о технологии токарных работ

К наиболее распространенным методикам изготовления деталей с заданными геометрическими параметрами относится токарная обработка металла. Суть данной методики, позволяющей также получать поверхность с требуемой шероховатостью, заключается в том, что с заготовки убирают лишний слой металла.

Процесс токарной обработки металла

Принципы токарной обработки

Технология токарных работ по металлу предполагает использование специальных станков и режущего инструмента (резцы, сверла, развертки и др.), посредством которого с детали снимается слой металла требуемой величины. Токарная обработка выполняется за счет сочетания двух движений: главного (вращение заготовки, закрепленной в патроне или планшайбе) и движения подачи, совершаемого инструментом при обработке деталей до заданных параметров их размера, формы и качества поверхности.

За счет того, что существует множество приемов совмещения этих движений, на токарном оборудовании работают с деталями различной конфигурации, а также осуществляют целый перечень других технологических операций, к которым относятся:

  • нарезание резьбы различного типа;
  • сверление отверстий, их растачивание, развертывание, зенкерование;
  • отрезание части заготовки;
  • вытачивание на поверхности изделия канавок различной конфигурации.

Основные виды токарных работ по металлу

Благодаря такой широкой функциональности токарного оборудования на нем можно сделать очень многое. Например, с его помощью выполняют обработку таких изделий, как:

  • гайки;
  • валы различных конфигураций;
  • втулки;
  • шкивы;
  • кольца;
  • муфты;
  • зубчатые колеса.

Естественно, что токарная обработка предполагает получение готового изделия, которое соответствует определенным стандартам качества. Под качеством в данном случае подразумевается соблюдение требований к геометрическим размерам и форме деталей, а также степени шероховатости поверхностей и точности их взаимного расположения.

Для обеспечения контроля над качеством обработки на токарных станках применяют измерительные инструменты: на предприятиях, выпускающих свою продукцию крупными сериями, – предельные калибры; для условий единичного и мелкосерийного производства – штангенциркули, микрометры, нутрометры и другие измерительные устройства.

Измерительные инструменты, часто используемые в токарном деле

Читайте также  Обработка кузова автомобиля от коррозии своими руками

Первое, что рассматривают при обучении токарному делу, – это технология обработки металлов и принцип, по которому она осуществляется. Заключается этот принцип в том, что инструмент, врезаясь своей режущей кромкой в поверхность изделия, зажимает его. Чтобы снять слой металла, соответствующий величине такого врезания, инструменту надо преодолеть силы сцепления в металле обрабатываемой детали. В результате такого взаимодействия снимаемый слой металла формируется в стружку. Выделяют следующие разновидности металлической стружки.

Такая стружка формируется тогда, когда на высоких скоростях обрабатываются заготовки, выполненные из мягкой стали, меди, олова, свинца и их сплавов, полимерных материалов.

Образование такой стружки происходит, когда на небольшой скорости обрабатываются заготовки из маловязких и твердых материалов.

Стружка такого вида получается при обработке заготовок из материала, отличающегося невысокой пластичностью.

Формирование такой стружки свойственно для среднескоростной обработки заготовок из стали средней твердости, деталей из алюминиевых сплавов.

Виды стружки при токарной обработке

Режущий инструмент токарного станка

Эффективность, которой отличается работа на токарном станке, определяется рядом параметров: глубиной и скоростью резания, величиной продольной подачи. Чтобы обработка детали была высококачественной, необходимо организовать следующие условия:

  • высокую скорость вращения заготовки, фиксируемой в патроне или планшайбе;
  • устойчивость инструмента и достаточную степень его воздействия на деталь;
  • максимально возможный слой металла, убираемый за проход инструмента;
  • высокую устойчивость всех узлов станка и поддержание их в рабочем состоянии.

Скорость резки выбирается на основе характеристик материала, из которого сделана заготовка, типа и качества применяемого резца. В соответствии с выбранной скоростью резки выбирается частота вращения шпинделя станка, оснащенного токарным патроном или планшайбой.

При помощи различных типов резцов можно выполнять черновые или чистовые виды токарных работ, а на выбор инструмента основное влияние оказывает характер обработки. Изменяя геометрические параметры режущей части инструмента, можно регулировать величину снимаемого слоя металла. Выделяют правые резцы, которые в процессе обработки детали передвигаются от задней бабки к передней, и левые, движущиеся, соответственно, в обратном направлении.

Основные типы токарных резцов

По форме и расположению лезвия резцы классифицируются следующим образом:

  • инструменты с оттянутой рабочей частью, ширина которой меньше ширины их крепежной части;
  • прямые;
  • отогнутые.

Различаются резцы и по цели применения:

  • подрезные (обработка поверхностей, перпендикулярных оси вращения);
  • проходные (точение плоских торцовых поверхностей);
  • канавочные (формирование канавок);
  • фасонные (получение детали с определенным профилем);
  • расточные (расточка отверстий в заготовке);
  • резьбовые (нарезание резьбы любых видов);
  • отрезные (отрезание детали заданной длины).

Качество, точность и производительность обработки, выполняемой на токарном станке, зависят не только от правильного выбора инструмента, но и от его геометрических параметров. Именно поэтому на уроках в специальных учебных заведениях, где обучаются будущие специалисты токарного дела, очень большое внимание уделяется именно вопросам геометрии режущего инструмента.

Углы токарного резца

Основными геометрическими параметрами любого резца являются углы между его режущими кромками и направлением, в котором осуществляется подача. Такие углы режущего инструмента называют углами в плане. Среди них различают:

  • главный угол – φ, измеряемый между главной режущей кромкой инструмента и направлением подачи;
  • вспомогательный – φ1, расположенный, соответственно, между вспомогательной кромкой и направлением подачи;
  • угол при вершине резца – ε.

Угол при вершине зависит только от того, как заточен инструмент, а вспомогательные углы можно регулировать еще и его установкой. При увеличении главного угла уменьшается угол при вершине, при этом уменьшается и часть режущей кромки, участвующей в обработке, соответственно, стойкость инструмента тоже становится меньше. Чем меньше значение этого угла, тем большая часть режущей кромки участвует как в обработке, так и в отводе тепла от зоны резания. Такие резцы являются более стойкими.

Практика показывает, что для токарной обработки не слишком жестких заготовок небольшого диаметра оптимальным является главный угол, величина которого находится в интервале 60–90 градусов. Если обрабатывать необходимо заготовку большого диаметра, то главный угол необходимо выбирать в интервале 30–45 градусов. От величины вспомогательного угла зависит прочность вершины резца, поэтому его не делают большим (как правило, он выбирается из интервала 10–30 градусов).

Особое внимание на уроках по токарному делу уделяется и тому, как правильно выбирать тип резца в зависимости от вида обработки. Так, существуют определенные правила, по которым обработку поверхностей того или иного типа выполняют с помощью резца определенной категории.

  • Обычные прямые и отогнутые резцы необходимы для обработки наружных поверхностей детали.
  • Упорный проходной инструмент потребуется для торцевой и цилиндрической поверхностей.
  • Отрезной резец выбирают для протачивания канавок и обрезки заготовки.
  • Расточные резцы применяются для обработки отверстий, просверленных ранее.

Отдельную категорию токарного инструмента составляют резцы, с помощью которых можно обрабатывать фасонные поверхности с длиной образующей линии до 40 мм. Такие резцы подразделяются на несколько основных типов:

  • по конструктивным особенностям: стержневые, круглые и призматические;
  • по направлению, в котором осуществляется обработка изделия: радиальные и тангенциальные.

Токарно-винторезный станок 1В625МП

Виды оборудования для токарной обработки

Из всех типов оборудования для токарной обработки наибольшее распространение и на крупных, и на мелких предприятиях получил токарно-винторезный станок. Причиной такой популярности является многофункциональность этого устройства, благодаря которой его с полным основанием можно назвать универсальным.

Перечислим основные элементы конструкции такого станка:

  • две бабки – передняя и задняя (в передней бабке размещают коробку скоростей станка; шпиндель с токарным патроном (или планшайбой), на задней бабке размещены продольные салазки и пиноль оборудования);
  • суппорт, в конструкции которого различают верхние и нижние салазки, поворотную плиту и резцедержатель;
  • несущий элемент оборудования – станина, установленная на две тумбы, в которых размещают электродвигатели.
  • коробка подач.

Токарный станок с ЧПУ

Все большее распространение получают станки, управление которыми осуществляется при помощи специальных компьютерных программ, – станки с ЧПУ. Конструкция таких станков отличается от обычной только тем, что в ней присутствует специальный блок управления.

В отдельные категории выделяют следующие виды станков токарной группы:

  • токарно-револьверное оборудование, применяемое для обработки деталей сложной конфигурации;
  • токарно-карусельные станки, среди которых различают одно- и двухстоечные;
  • многорезцовое полуавтоматическое оборудование, которое можно встретить на предприятиях, выпускающих свою продукцию крупными сериями;
  • обрабатывающие комплексы, на которых можно выполнять как токарные, так и фрезерные операции.

Без токарной обработки сегодня крайне сложно представить многие производственные отрасли. Поэтому данный вид работы с металлом продолжает развиваться, несмотря на и без того высокий уровень, позволяющий обеспечить высочайшее качество и скорость обработки.

Токарная обработка с ЧПУ — процессы, операции и оборудование часть 1

Токарная обработка с ЧПУ является одним из основных методов производства цилиндрических деталей с различными контурами.

В машиностроении нельзя обойти валы для передачи энергии от двигателя к движущимся частям. Валы, конечно, требуют точения. Но токарные станки с ЧПУ находят широкое применение в различных отраслях промышленности для изготовления обычно осесимметричных деталей.

Что такое токарная обработка?

Токарная обработка — это процесс субтрактивной обработки, который использует режущий инструмент для удаления материала для создания цилиндрических деталей. Сам инструмент перемещается вдоль оси обрабатываемой детали во время ее вращения, создавая спиральную траекторию движения инструмента.

Термин токарная обработка относится к производству деталей путем резки на внешней поверхности. Противоположностью токарной обработки является растачивание, при котором токарные станки используются, например, для создания полых деталей.

Токарный станок исторически является одним из первых станков для производства деталей полуавтоматическим способом. Сегодня большинство компаний предоставляют услуги токарной обработки с ЧПУ. Это означает, что процесс в значительной степени автоматизирован от начала до конца.

Читайте также  Как обработать кромку стекла в домашних условиях?

ЧПУ означает числовое программное управление, что означает, что компьютеризированные системы берут на себя управление оборудованием. Входной сигнал — цифровой код. Это контролирует все движения инструмента и скорость вращения, а также другие вспомогательные действия, такие как использование охлаждающей жидкости.

Токарный процесс с ЧПУ:

Из чего на самом деле состоит процесс токарной обработке на станке с ЧПУ? Хотя сама вырезка довольно проста, мы рассмотрим здесь всю последовательность, которая фактически начинается с создания файла САПР.

Шаги процесса:

  • Создание цифрового представления детали в САПР;
  • Создание кода обработки из файлов САПР;
  • Настройка токарного станка с ЧПУ;
  • Изготовление токарных деталей.

CAD-дизайн и G-код:

Первые 2 шага можно рассматривать как отдельные или идущие рука об руку. Один из способов — просто использовать программу САПР для создания файлов и отправки их в производство. Затем инженер-технолог создаст Gкод и Mкод для обработки.

cad-cam для токарных операций

Другой способ — просто использовать программное обеспечение CAD-CAM, которое позволяет инженеру-конструктору проверить возможность производства детали. Мощные инструменты моделирования могут визуализировать весь процесс от сырья до конечного продукта, даже используя исходные данные, касающиеся требований к отделке.

Наконец, есть также ручной способ создания кода. Например, вы не можете автоматически сгенерировать код из 2D-чертежа, у вас есть 2 варианта: либо написать код вручную, либо сначала создать 3D-модель.

Даже мощные программы CAM не всегда могут сделать все точно, поэтому рекомендуется проверить закодированные инструкции.

Настройка токарного станка:

Далее идет настройка машины. Здесь роль оператора станка становится очевидной. Хотя современные токарные станки с ЧПУ выполняют большую часть работы автоматически, оператор по-прежнему играет жизненно важную роль.

Шаги по настройке токарного центра с ЧПУ:

  • Убедитесь, что питание отключено. Обработка с ЧПУ может быть опасной, поэтому необходима особая осторожность, и проверка выключателя питания является основой для этого;
  • Закрепление детали в патроне. Патрон удерживает деталь на протяжении всего процесса. Неправильная загрузка может представлять опасность, а также привести к получению готовой детали неправильных размеров;
  • Загрузка револьверной головки. Токарная обработка состоит из множества этапов, поэтому убедитесь, что вы выбрали правильный инструмент для определенной отделки. Револьверная головка может одновременно удерживать множество инструментов для бесперебойной работы от начала до конца;
  • Калибровка. И инструмент, и деталь должны быть правильно настроены. Если что-то не так, результат не будет соответствовать требованиям;
  • Загрузите программу. Последний шаг перед нажатием кнопки пуска — это загрузка кода в станок с ЧПУ.

Револьверная головка станка ЧПУ.

Производство деталей:

Самый простой способ понять суть производства — это просто посмотреть видео выше. Сырье, как видно, не является круглым бруском, что является наиболее распространенным вариантом. Скорее всего, шестигранный профиль — это более эффективный способ избежать фрезерования с ЧПУ в дальнейшем.

В зависимости от сложности детали может потребоваться один или несколько циклов. Расчеты времени цикла определяют конечное затраченное время, необходимое для расчета затрат.

Время цикла токарной обработки включает:

  • Время загрузки. Мы уже описали это как часть установки, но цикл может потребовать другого способа загрузки детали в оборудование;
  • Время резки. Время, необходимое для этого, зависит от глубины резания и скорости подачи;
  • Время простоя. Время простоя относится ко всему, что не относится к резке, например, к перемещению инструментов к детали и от детали, изменению настроек токарного станка и т. д.;
  • Срок службы инструмента. Хотя каждый цикл не приводит к полному износу инструмента, время резания будет учитываться по сравнению с общим сроком службы инструмента, чтобы включить его в окончательную стоимость.

Параметры токарной обработки:

Параметры токарной обработки с ЧПУ зависят от различных аспектов. К ним относятся материал детали и инструмента, размер инструмента, требования к отделке и т. д.

Основные параметры токарной обработки с ЧПУ:

  • Скорость вращения шпинделя. Единица измерения — это обороты в минуту (об/мин), и она показывает скорость вращения шпинделя (N), а значит, и заготовки. Скорость вращения шпинделя находится в прямой зависимости от скорости резания, которая также учитывает диаметр. Поэтому скорость вращения шпинделя должна изменяться, чтобы поддерживать постоянную скорость резания при значительном изменении диаметра.
  • Диаметр заготовки. Как уже говорилось, это играет важную роль в достижении правильной скорости резания. Обозначается символом D, а единица измерения — мм.
  • Скорость резания. Уравнение для расчета скорости резания: V =πDN/1000. Он показывает относительную скорость заготовки относительно режущего инструмента.
  • Скорость подачи. Единица измерения — мм/об, символ — с. Подача резания показывает расстояние, на которое режущий инструмент перемещается за один оборот заготовки. Расстояние измеряется в осевом направлении.
  • Осевая глубина реза. Довольно очевидно, так как он показывает глубину разреза в осевом направлении. Это основной параметр для облицовочных операций. Более высокая скорость подачи оказывает большее давление на режущий инструмент, сокращая его срок службы.
  • Радиальная глубина реза. В отличие от осевого реза, она показывает глубину резания перпендикулярно оси. Опять же, более низкие скорости подачи помогают продлить срок службы инструментов и обеспечить лучшую чистовую обработку.

Основные части токарного станка с ЧПУ:

Теперь давайте рассмотрим на основные компоненты токарного центра.

Передняя бабка

Передняя бабка токарного станка с ЧПУ составляет переднюю часть станка. Именно здесь приводной двигатель находится вдоль механизмов, приводящих в действие шпиндель. Патрон или цанга крепятся к шпинделю. Любой из них, в свою очередь, удерживает заготовку во время токарной операции.

Патрон и цанга

Патрон захватывает обрабатываемую деталь своими губками. Он крепится непосредственно к шпинделю, но является сменным, поэтому можно обрабатывать детали разного размера. Цанга — это в основном уменьшенная версия патрона. Размер детали, подходящей для цанг, составляет до 60 мм. Они обеспечивают лучшее сцепление с мелкими деталями.

Задняя бабка

Другой конец токарного центра с ЧПУ. Задняя бабка крепится непосредственно к станине и предназначена для поддержки более длинных заготовок. Пиноль задней бабки обеспечивает поддержку за счет гидравлической силы.

Движущая сила по-прежнему идёт от шпинделя, а задняя бабка просто движется вместе с деталью. Использование задней бабки не подходит при необходимости торцевого точения, так как она будет мешать.

Станина токарного станка

Станина — это просто опорная плита, которая опирается на стол, поддерживая другие части машины. Каретка движется по станине, которая подвергается термообработке, чтобы выдерживать воздействие механической обработки.

Каретка опирается на пути скольжения вдоль вращающейся заготовки. Она удерживает инструменты, позволяя протекать процессу резки.

Новые машины обычно поставляются с башней, которая заменяет каретку. Она может держать больше инструментов одновременно, что делает переключение с одной операции на другую менее трудоемким.

Вращающиеся инструменты на станке с ЧПУ

Обрабатывающие центры с ЧПУ могут поставляться с вращающимися инструментами. В то время как одноточечные режущие инструменты подходят для большинства токарных операций, к вращающимся инструментам относятся фрезы, сверла и другие инструменты, которые имеют собственный привод. Это позволяет создавать шпоночные пазы или отверстия, перпендикулярные оси детали, без использования какого-либо другого оборудования в процессе.

Панель управления

Здесь вступает в действие числовое программное управление. Мозг токарных станков с ЧПУ находится прямо за панелью. Сама панель позволяет оператору настроить программу и запустить ее.

Если вам понравился данная статья, то поделитесь её со своими друзьями, оставляйте комментарии и ставьте лайк!