Как определить точность обработки детали на станке?

Как определить точность обработки детали на станке?

ГЛАВА ПЕРВАЯ ТОЧНОСТЬ МЕХАНИЧЕСКОЙ ОБРАБОТКИ

1. ОБЩИЕ ПОЛОЖЕНИЯ

В’ процессе механической обработки деталей на металлорежущих станках происходит изменение размеров и формы заготовок, причем с каждой последующей операцией обрабатываемая деталь все больше .приближается по своим размерам, форме и точности к заданным в чертеже. Для того чтобы получить готовую деталь, необходимо произвести несколько операций. Так, например, чтобы обработать вал по второму классу точности (6-му квалитету), необходимо вначале выполнить черновую обработку заготовки на токарном станке, затем получистовую и, наконец, окончательную обработку. Для обработки валов меньшей точности число операций будет меньше. Назначаемое число операций зависит также от состояния заготовки и оборудования.

При обработке точных отверстий число операций обычно больше, чем при обработке валов. Это объясняется тем, что на точность обработки отверстий влияют трудности подвода смазочно-охлаждающей жидкости (СОЖ) и отвода стружки, меньшая жесткость режущего инструмента ого сравнению с инструментами для обработки валов. Совокупность этих условий требует, с одной стороны, увеличения числа операций, а с другой— некоторого уменьшения подачи при обработке точных отверстий резцами.

На ‘каждой операции с поверхностей заготовки снимается определенный слой металла — припуск. Причем на первых операциях он наибольший и последовательно уменьшается по мере выполнения последующих операций. Распределение припуска обеспечивает более высокую точность обработки и позволяет уже на первых операциях выявить возможный скрытый брак (раковины, закаты, трещины и т. д.), и такая деталь не поступит на дальнейшую обработку. Снятие больших припусков на первых операциях приводит также к максимальному проявлению внутренних напряжений, что вызывает уже на первых стадиях обработки коробление заготовки (особенно литой или штампованной). Это коробление исправляют в процессе последующей обработки.

Что же такое точность механически обработанной детали? В данном случае под точностью понимают степень соответствия реальной, фактически изготовленной детали ее заданному образцу-эталону, размеры которого определены на чертеже с указанием «а нем требований к точности готовой детали. Изготовить деталь на металлорежущем станке абсолютно точно, без отклонений, практически невозможно, и поэтому на чертежах задаются наибольший и наименьший предельные размеры, между которыми должен находиться действительный размер годной детали.

Если действительные размеры детали не будут выходить из заданных предельных размеров, то такая деталь будет годной; если же будут выходить, то такая деталь является негодной и подлежит забраковыванию или исправлению. Точность деталей, обработанных на металлорежущих станках, определяется точностью размеров, отклонениями формы обработанных поверхностей и точностью расположения поверхностей. Точность размеров изготовленных деталей определяется величиной отклонений линейных или угловых размеров реальной детали от заданных. Это размеры наружных и внутренних диаметров, длин и уступов, ширины канавок, величины наружных и внутренних углов и т. п.

К отклонениям формы поверхности обработанных деталей относятся, часто .встречающиеся отклонения, показанные на рис. 1. Кону сообразность (рис. 1 , а) и бочкообразность (рис. 1, в) являются частными видами отклонений профиля продольного сечения цилиндрической поверхности.

Рис. 1. Отклонения формы поверхностей

Овальность (рис. 1,б) является частным видом отклонения от круглости в поперечном сечении, при котором реальный профиль имеет овалообразную форму, наибольший и наименьший диаметры которого находятся во взаимно перпендикулярных
направлениях.

Отклонение от круглости (рис. 1, г) представляет наибольшее расстояние Д от точек реального профиля 1 до прилегающей окружности 2.

На рис. 1,5 показано отклонение от прямолинейности; это наибольшее расстояние А от точек реального профиля 1 до прилегающей прямой 2 в пределах нормируемого участка L.

Некоторые основные виды отклонений расположения обработанных поверхностей показаны на рис. 2. Торцовое биение бт (рис. 2, а) определяется как разность на окружности заданного диаметра d наибольшего и наименьшего расстояний от точек реального профиля торцовой .поверхности до плоскости, перпендикулярной базовой оси 1 (оси вращения). Радиальное биение (рис. 2, б) определяется как разность Аmax—Аmin
от точек реального профиля поверхности вращения до .базовой оси 1. Отклонение от параллельности бпар оси отверстия к плоскости основания детали (рис. 2, в) определяется разностью размеров Л и В, задаваемых в чертеже на определенной длине L. Отклонение от перпендикулярности бп (рис. 2, г) задается также на определенном расстоянии I.

Точность расположения устанавливают как для реальных поверхностей, так и для осей поверхностей или для реальных поверхностей относительно осей. Действительные отклонения размеров, формы и расположения поверхностей изготовленных деталей определяют, измеряя или контролируя детали. По результатам измерений судят о годности детали. При этом браковочным признаком являются отклонения, выходящие из заданных пределов хотя бы по одному из показателей.

Допуски и посадки, точность обработки на станках

Точность обработки на станках

Требования в отношении точности обработки детали могут быть весьма различными; они зависят от назначения детали в конструкции машины и от тех технических условий, которым должна удовлетворять машина в целом.

Нет никакой необходимости изготовлять точно поверхности деталей, которые не сопрягаются с другими деталями, например: наружные поверхности станин, рам и т. п.; размеры этих поверхностей могут колебаться в значительных пределах.

Наоборот, поверхности сопряжения с совместно работающей деталью должны обрабатываться весьма точно.

Но высокие требования в отношении точности деталей снижают производительность оборудования, увеличивают брак в производстве и значительно повышают себестоимость деталей.

Поэтому следует предъявлять требования высокой точности обработки только в тех случаях, когда это вызывается условиями работы машины, и ограничиваться точностью, необходимой для нормальной работы детали в собранной машине.

Недостаточная точность ухудшает качество машины, но в то же время излишняя точность удорожает машину, и в тех случаях, где это не требуется по характеру конструкции, получится отрицательный результат: выпуск продукции за тот же период будет меньше и стоимость её выше.

Взаимозаменяемость

Получить размеры при обработке одинаково точные в обычных производственных условиях не представляется возможным; поэтому допускается изготовление размеров деталей с некоторыми колебаниями в определённых границах, обеспечивающих взаимозаменяемость деталей.

Взаимозаменяемыми называют детали, которые подходят к своему месту в машине без всякой пригонки и которые работают при этом так, как это необходимо для правильного действия машины.

Основное требование взаимозаменяемости заключается в том, чтобы детали работали в машине нормально без подгонки их по месту.

Технико-экономическое значение принципа взаимозаменяемости весьма велико. Избавляясь от ручной обработки, устраняя необходимость ручной подгонки деталей по месту, механизируя весь процесс изготовления деталей, мы тем самым упрощаем, удешевляем и ускоряем производство.

Точно так же взаимозаменяемость частей даёт возможность быстро, легко,- просто и дёшево производить ремонт машин во время эксплуатации, так как в этом случае не требуется при замене старой, износившейся или поломанной детали никакой пригонки: новая деталь ставится на место старой без всякой пригонки.

Такие машины, как: велосипед, швейная машина, пишущая машина, мотоцикл, автомобиль получили широкое применение только благодаря тому, что замена деталей может быть осуществлена без всяких затруднений самим потребителем.

Изготовление взаимозаменяемых деталей с получением окончательных размеров и форм их на механических станках даёт возможность вести производство отдельных деталей (или отдельных механизмов) в различных местах и в разное время, выполняя сборку всей машины отдельно в специальных сборочных мастерских.

Кроме того, обработка деталей по принципу взаимозаменяемости вследствие упрощения производственного процесса не требует высокой квалификации рабочего.

Работа по принципу взаимозаменяемости производится в серийном и. массовом производстве, где вследствие повторяемости процессов изготовления одних и тех же деталей затраты на необходимые для осуществления этого принципа средства производства дают такой технико-экономический эффект, который с значительной выгодой окупает их.

Допуски

Ввиду того, что получить во всех случаях одинаково точные размеры деталей не представляется возможным, как уже отмечалось, допускается изготовление деталей с размерами, имеющими разницу в определённых, ограниченных пределах, гарантирующих их, взаимозаменяемость.

Таким образом одни и те же детали могут иметь размеры, несколько отличающиеся один от другого, причём колебание их будет находиться в определённых границах — между наибольшим предельным размером (верхним) и наименьшим предельным размером (нижним).

Разность между наибольшим и наименьшим предельными размерами называется допуском.

Допуск определяет величину колебания точности в обработке отверстия или вала (допуск отверстия или допуск вала).

Читайте также  Для реализации процесса обработка предназначен

Если, например, необходимо изготовить отверстие, размер которого на чертеже обозначен 65 мм, то наибольший предельный размер может быть 65,030 мм, а наименьший 65,000 мм разность между этими размерами, определяющими границы, в которых могут колебаться их величины, равная 0,030 мм, будет выражать допуск на неточность обработки.

Размер, обозначаемый на чертеже в круглых единицах (в данном примере — 65 мм), называется номинальным размером.

Номинальный размер есть основной расчётный размер он получается в результате расчёта вала на действующие на него усилия (изгиб, кручение и т. д.), после округления полученных при расчёте теоретических величин до целых миллиметров или до ближайшей «круглой» цифры 5 или 10.

Фактический или действительный размер, полученный при обработке, будет находиться где-то между наибольшим и наименьшим предельными размерами. Действительным размером называется тот, который получается непосредственным измерением.

Отклонения

Разность между каким-либо предельным размером и номинальным размером называется отклонением.

Верхним отклонением называется разность между наибольшим предельным размером и номинальным размером.

Нижним отклонением называется разность между наименьшим размером и номинальным размером (ОСТ 1001).

В приведённом примере, на странице допусков, верхнее отклонение будет равно

65,030-65=0,030 мм, нижнее отклонение будет равно 65,000—65=0.

Системы расположения допусков

Величина допуска по отношению номинального размера может быть расположена по-разному.

Допуск может идти на увеличение или уменьшение номинального размера, т. е. идти в одну сторону от номинального размера (фиг. 22);

например, номинальный размер — 66 мм., наибольший предельный размер — 65,030 мм, наименьший предельный размер 66,000 мм, допуск 0,030 мм идёт в одну сторону от номинального размера.

Такая система расположения допусков называется несимметричной односторонней (так как допуск откладывается несимметрично по отношению номинального размера и в одну сторону от него).

В графическом изображении расположения допусков линия номинальных размеров называется нулевой линией.

Та же величина допуска может идти по обе стороны от номинального размера, причём она может быть расположена равными частями по обе стороны номинального размера (фиг. 23), или неравным (фиг.24);

в том же примере величина допуска 0,030 мм может быть расположена поровну от номинального размера — 66 мм, таким образом 0,015 мм идёт в сторону увеличения и 0,016 мм в сторону уменьшения номинального размера, т. е. наибольший предельный размер будет 65,015 мм и наименьший — 64,985 мм. Та же величина допуска 0,030 мм может быть расположена и не поровну от номинального размера — 65 мм — следующим образом:

0,020 мм идёт в сторону увеличения номинального размера, а 0,010 мм — в сторону уменьшения, т. е. наибольший предельный размер будет 65,020 мм и наименьший — 64,990 мм.

Фиг. 22. Несимметричная односторонняя система допусков.

Фиг. 23. Симметричная система допусков.

Фиг. 24. Несимметричная двусторонняя система допусков.

Если величина допуска располагается по обе стороны от номинального размера равными частями, то такая система расположения допусков называется симметричной системой; если же величина допуска располагается неравными частями по обе стороны от номинального размера, то такая система расположения допусков называется несимметричной двусторонней системой.

Различное расположение величины допуска не влияет на трудность работы; трудность выполнения размеров зависит не от расположения допуска по отношению номинального размера, а от абсолютной величины допуска.

Посадки

Соединяя вал и отверстие одного и того же номинального размера, можно получить в зависимости от величины зазора или натяга различный характер соединения, называемый посадкой.

«Посадка определяет характер соединения двух вставленных одна в другую деталей и обеспечивает в той или иной степени, за счёт разности фактических размеров, свободу их относительного перемещения или прочность их неподвижного соединения»

Таким образом посадка в зависимости от того, будет ли зазор или натяг и в зависимости от их величин даёт возможность валу свободно двигаться в отверстии или, наоборот, даёт неподвижное соединение вала с отверстием. Все посадки в связи с этим разделяют на две основные группы:

1) посадки подвижные, обеспечивающие возможность относительного перемещения соединённых деталей во время их работы; эта возможность обеспечивается наличием зазоров;

2) посадки неподвижные, при которых соединённые детали во время их работы не должны перемещаться одна относительно другой, что достигается наличием натягов.

Каждая из этих двух основных групп подразделяется на ряд отдельных посадок, характеризующихся большим или меньшим натягом (посадки неподвижные), или большим или меньшим зазором (посадки подвижные); соответственно характеру, им и даны названия. Располагая посадки в таком порядке, что первая в группе неподвижных будет с наибольшим натягом, а последняя в группе подвижных с наибольшим зазором, получим ряд, в который входит двенадцать посадок:

Неподвижные посадки

1) горячая посадка,

3) легко-прессовая посадка,

4) глухая посадка,

5) тугая посадка,

6) напряжённая посадка,

7) плотная посадка.

Подвижные посадки

1) посадка скольжения,

2) посадка движения,

3) ходовая посадка,

4) легко-ходовая посадка,

5) широко-ходовая посадка.

К группе подвижных относится посадка скольжения, которая по своему характеру находится на границе посадок неподвижных и подвижных; у ней наименьший зазор равен нулю. В нашей системе эта посадка отнесена к подвижным потому, что в среднем у неё имеется зазор.

Классы точности

Для того чтобы иметь возможность производить обработку деталей одного и того же размера с различными допусками в зависимости от характера и назначения этих деталей, системы допусков составляют из нескольких классов точности обработки.

Классам точности придают названия и порядковый номер; номер возрастает по мере убывания степени точности.

Таким образом первый класс является самым точным (весьма точный, очень точный), второй класс служит для точных работ (точный), третий класс — для работ средней или обыкновенной точности (средний); для более грубых работ применяются классы точности 4, 5, 6, 7, 8, 9 в порядке убывания степеней точности. Число классов в разных системах допусков бывает различное. В нашей системе ОСТ — 9 классов точности, причём 6-й класс временно не установлен; в германской системе DIN — 4 класса точности.

Каждый класс охватывает несколько посадок; число посадок в низших классах обычно меньше, чем в высших, исходя из того, что точность большого количества градаций не имеет смысла.

Второй класс является основным и в него входят все посадки. Это особое значение данного класса отмечено тем, что условное обозначение его на чертежах не ставится.

Точность обработки по тому или другому классу достигается на различных станках и разными способами.

Значение приспособлений для точности обработки

Для точности обработки деталей имеют большое значение приспособления широко применяемые в серийном и массовом производстве.

При пользовании приспособлением для обработки исключается необходимость в разметке деталей — операции дорогой, вносящей погрешности и зависящей от индивидуальных качеств разметчика.

Применение приспособлений обеспечивает точность обработки, и притом наиболее одинаковую для всех деталей, обрабатываемых с их помощью; благодаря этому в наибольшей степени обеспечивается соблюдение принципа взаимозаменяемости.

Помимо этого применение приспособлений, ускоряющих установку деталей и сокращающих время на измерение деталей, даёт возможность значительно сократить вспомогательное время, которое иногда достигает больших размеров и превышает основное время.

Для получения надлежащей точности размеров детали, обрабатываемой при помощи приспособления, необходимо, чтобы само приспособление было изготовлено весьма точно и чтобы нарастания погрешностей при обработке не происходило из-за неточности отдельных элементов приспособления.

В связи с этим необходимо при назначении допусков на размеры приспособлений давать такие пределы отклонений для размеров приспособлений, которые будут в два раза меньше соответственных пределов отклонений для обрабатываемой детали.

Необходимая точность обработки детали в таком случае будет обеспечена.

Точность обработки деталей

Взаимозаменяемость деталей.

Выпуск велосипедов, мотоциклов, тракторов, автомобилей, электродвигателей, швейных и других машин осуществляется на заводах такими темпами, когда счет времени обработки и сборки ведется не только минутами, но и секундами. Детали этих машин должны быть изготовлены точно по чертежам и техническим условиям так, чтобы при сборке они подходили одна к другой без слесарной подгонки, что сокращает время на сборку и удешевляет стоимость изделия. Важно также, чтобы при ремонте машины новая деталь, заменяющая изношенную, могла быть установлена на ее место без подгонки. Детали, удовлетворяющие таким требованиям, называются взаимозаменяемыми. Взаимозаменяемость – это свойство деталей занимать свои места в узлах и изделиях без предварительного подбора или подгонки по месту.

Читайте также  Виды технологических процессов обработки материалов

Сопряжение деталей.

Две детали, подвижно или неподвижно соединяемые друг с другом, называют сопрягаемыми. Размеры, по которым происходит соединение этих деталей, называют сопрягаемыми размерами. Размеры, по которым не происходит соединение деталей, называют свободными размерами. Примером сопрягаемых размеров может служить наружный диаметр фрезерной оправки и соответствующий ему диаметр отверстия в насадной фрезе, диаметр шейки оправки и соответствующий ему диаметр отверстия в подшипнике подвески. Примером свободных размеров может служить наружный диаметр установочных колец фрезерной оправки, длина фрезерной оправки, ширина цилиндрической фрезы.

Сопрягаемые детали должны быть выполнены взаимозаменяемыми.

Понятие о точности обработки.

Изготовить партию взаимозаменяемых деталей абсолютно одинакового размера невозможно, так как на точность обработки влияют неточность и износ станка, износ фрезы, неточности при установке и закреплении заготовки и другие причины. Как правило, все детали данной партии при обработке имеют отклонения от заданных размеров и формы. Но величины этих отклонений должны быть назначены таким образом, чтобы сопрягаемые размеры могли обеспечить сборку деталей без подгонки, т.е. чтобы детали были взаимозаменяемыми.

Конструкторы изделий при назначении величины допускаемых отклонений на сопрягаемые детали руководствуются установленными государством стандартами – ГОСТ. Ниже вкратце излагаются основные понятия о допусках и предельных отклонениях, вытекающие их ГОСТ 7713-55.

Понятие о допуске и предельных отклонениях. Величина допустимых отклонений указывается в чертежах детали со знаками плюс и минус.

Знак минус показывает, что деталь может быть изготовлена с отклонением в меньшую сторону; знак плюс показывает, что деталь может быть изготовлена с отклонением в большую сторону. Например, поставленный в чертеже бруска размер 10-0,1 мм показывает, что брусок может быть отфрезерован так, чтобы после его обработки его размер лежал в пределах между 10 мм и 9,9 мм. Точно также поставленный в чертеже диаметр паза 10 +0,2 мм показывает, что паз может быть отфрезерован так, чтобы после обработки его размер лежал в пределах между 10 мм и 10,2 мм.

Поставленный в чертеже размер 10 +0,2 -0,1 мм показывает, что обработанная деталь будет годной, если ее размер составляет не менее 9,9 мм и не более 10,2 мм, т.е. лежит в этих пределах.

Номинальным размером называется основной расчетный размер, от которого исходят при назначении отклонений. Если в чертеже указан размер 10 +0,2 -0,1 мм, то размер 10 мм называется номинальным.

Действительным размером называется размер, полученный при измерении обработанной детали. Размеры, между которыми может находиться действительный размер годной детали, называются предельными размерами. Действительный размер детали с размерами 10 +0,2 -0,1 мм может лежать в пределах 10+0,2 = 10,02 мм и 10-0,1 =9,9 мм. Больший размер называется наибольшим предельным размером, а меньший – наименьшим предельным размером.

Разность между наибольшим и наименьшим предельными размерами называется допуском размера.

  • Верхним предельным отклонением называется разность между наибольшим предельным размером и номинальным размером.
  • Нижним предельным отклонением называется разность между наименьшим предельным размером и номинальным размером.

Допуск можно также определить, как разность между верхним и нижним предельными отклонениями.

Действительным отклонением называется разность между действительным и номинальным размерами.

При графическом изображении допусков отклонения размеров откладываются от линии, соответствующей номинальному размеру и называемой нулевой линией; положительные отклонения откладываются вверх от нулевой линии, а отрицательные – вниз.

Зазоры и натяги.

Если брусок с размерами грани 10-0,1 мм посадить в паз с размерами грани 10 +0,2 +0,1 мм, то в соединении бруска с пазом получится зазор, и брусок можно будет передвигать вдоль паза. Такая посадка (сопряжение двух деталей) называется свободной. Наибольший зазор в этом случае составит 0,3 мм, а наименьший будет равен 0,1 мм.

Если же размер бруска будет 10 +0,2 +0,1 мм, а паза 10-0,1 мм, то брусок не войдет свободно в паз и его придется вставлять с силой или запрессовывать. В соединении получится натяг или отрицательный зазор, наименьшая величина которого равна 0,1 мм. А наибольшая 0,3 мм. Такая посадка называется неподвижной, так как брусок нельзя будет передвигать вдоль паза.

Таким образом, можно сделать следующие заключения.

  • Зазором называется положительная разность между размером паза и размером бруска, обеспечивающая свободу их движения относительно друг друга.
  • Натягом называется отрицательная разность между размером паза и размером бруска (размер бруска больше размера паза), которая после посадки бруска в паз создает неподвижное их соединение.

Посадки.

Посадкой называется характер соединения сопрягаемых деталей, определяемый разностью между размерами паза и бруска, создающий большую или меньшую свободу (зазор или натяг) их относительного перемещения или степень сопро­тивления взаимному перемещению. В зависимости от наличия в сопряжении бруска и паза зазора или натяга различают посадки с зазором, с натягом и переходные.

Посадками с зазором, или свободными, называют такие посадки, при которых обеспечивается возможность относительного перемещения сопряженных деталей во время работы. В зависимости от величины зазора степень относительного перемещения деталей, сопряженных свободной посадкой, может быть различной. Для вращения шпинделя фрезерного станка в подшипниках зазор должен быть меньшим и, следовательно, посадка более тугой, чем для посадки колец на фрезерную оправку.

Посадками с натягом, или неподвижными, называют посадки, при которых во время работы не должно происходить перемещения сопряженных деталей относительно друг друга. В зависимости от величины натяга степень свободы сопряженных деталей неподвижной посадки может быть различной. Так, посадку шейки вала в кольцо шарикоподшипника производят с меньшим натягом, чем посадку колеса железнодорожного вагона на шейку оси.

При переходных посадках возможно получение, как натягов, так и зазоров. При наибольшем предельном размере бруска и наименьшем предельном размере паза получается натяг, а при наименьшем предельном размере бруска и наибольшем предельном размере паза получается зазор (в таблицах допусков в графе «натяг» обозначен знаком минус).

Ниже приводятся посадки, относящиеся к рассмотренным трем группам; в скобках даются их сокращенные обозначения.

Наибольший натяг получается при горячей посадке, меньший — при прессовых посадках; наименьший зазор получается при скользящей посадке, немного больший — при посадке движения, почти втрое больший при ходовой, затем еще больший при легкоходовой и, наконец, наибольший при широкоходовой посадке.

При глухой, тугой, напряженной и плотной посадках, как указывалось выше, возможны натяги и зазоры в зависимости от получающихся отклонений размера.

Классы точности.

Точность изготовления характеризуется величиной допускаемых отклонений от заданных размеров и формы. Для разных машин требуются детали с различной точностью обработки. Очевидно, что детали плуга, дорожного катка и других сельскохозяйственных и дорожных машин могут быть изготовлены менее точно, чем детали фрезерного станка, а детали фрезерного станка требуют меньшей точности, чем детали измерительного прибора. В связи с этим в машиностроении детали разных машин изготовляют по разным классам точности. В СССР (были) приняты десять классов точности.

  • пять из них: 1-й, 2-й, 2а, 3-й, За — требуют наибольшей точности обработки;
  • два других: 4-й и 5-й — меньшей;
  • три остальных: 7-й, 8-й, 9-й — еще меньшей.

Применение классов точности в различных областях

  • 1-й класс точности применяют при изготовлении особо точных изделий. Вследствие очень малых допусков работа по 1-му классу точности требует высокой квалификации рабочего и точного оборудования, приспособлений и инструмента.
  • 2-й и 2а классы точности применяют наиболее часто. По ним изготовляют ответственные детали станков, автомобильных, тракторных, авиационных и электрических двигателей, текстильных и других машин.Наряду с этим в отраслях машиностроения, выпускающих указанные машины, детали менее ответственных соединений из­готовляют по 3-му, 4-му, 5-му и другим более грубым классам точности.
  • 3-й и За классы точности применяют главным образом в тяжелом машиностроении при производстве турбин, паровых машин, двигателей внутреннего сгорания, трансмиссионных деталей и т. д.
  • По 4-му классу точности изготовляют детали сельскохозяйственных машин, паровозов, железнодорожных вагонов и т. д.
  • 5-й класс точности применяют в машиностроении для неответственных деталей менее точных механизмов.
  • 7-й, 8-й и 9-й классы точности применяют при изготовлении более грубых деталей и особенно при заготовительных операциях: литье, штамповке, медницко-слесарных работах и т. д.
  • Свободные размеры деталей выполняют обычно по 5-му или 7-му классам точности.
Читайте также  Выбор резца для токарной обработки

Чтобы показать, с какой посадкой и по какому классу точности нужно изготовить деталь, в чертежах на номинальных сопрягаемых размерах ставится буква, обозначающая посадку, и цифра, соответствующая классу точности. Например, С4 означает: скользящая посадка 4-го класса точности; Х3ходовая посадка 3-го класса точности и т. п. Для посадок 2-го класса точности (особенно широко распространенных) цифра 2 не ставится. Поэтому, если в чертеже на сопрягаемом размере рядом с буквой посадки нет цифры, то это значит, что деталь надо изготовить по 2-му классу точности. Например, Л означает легкоходовая посадка 2-го класса точности.

МЕТОДЫ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ТОЧНОСТИ ОБРАБОТКИ НА СТАНКАХ

Требования к прецизионности станков занимают пер­востепенное значение по сравнению с требованиями даже к таким важным показателям, как производительность или стоимость обработки на них. Несоответствие реаль­ной точности обработки предъявляемым к конкретной ситуации требованиям делает бессмысленной эксплуата­цию станка, тогда как недостаточная производительность или высокая себестоимость обработки деталей могут быть либо скомпенсированы, либо в крайнем случае до­пущены.

Необходимость определения фактических погрешно­стей обработки уже на стадии проектирования станков обусловила развитие теоретических методов расчета. При проведении расчетов наиболее желательным является установление соответствующих функциональных зависи­мостей между принимаемыми в расчет факторами и по­грешностями обработки на станках. В основу таких расчетов [2, 3] закладываются конкретные схемы и опре­деленные физические представления о механизме воздей­ствия рассматриваемых факторов. Расчетные методы предполагают полную детерминированность процесса об­работки, для которого точно известно влияние всех сопут­ствующих факторов. При этом зависимости могут быть заданы в виде систем различных уравнений (алгебраи­ческих, дифференциальных, интегральных и т. д.). В ре­зультате решений детерминированных-систем, описыва­ющих закономерности образования погрешностей обра­ботки, однозначно определяется искомая точность.

В ряде случаев погрешности некоторых элементов станков и обрабатываемых деталей действительно нахо­дятся в прямой функциональной зависимости. Например, биение переднего подшипника шпинделя токарного стан­ка вызывает строго определенную величину отклонения от круглости обрабатываемой поверхности, а смещение центров передней и задней бабок •— конусность. В каж­дом отдельном случае путем геометрических преобрат зований можно установить конкретную величину погреш —

постой. Расчетным путем определяются погрешности, обусловленные методическими ошибками принятого спо­соба обработки. К ним относятся погрешности вследствие использования инструмента приближенного профиля (на­резание зубчатых колес червячными фрезами), примене­ния зубчатых колес с фактическим передаточным отно­шением вместо расчетного и т. д.

Детерминированный подход при определении точнос­ти обработки возможен при строго регламентированных расчетных величинах. В реальных условиях учет их с тре­буемой точностью не всегда возможен. Поэтому извест­ные в технологии формулы для расчета погрешностей обработки, как правило, не удается непосредственно ис­пользовать для оценки фактической точности обработки. В реальных процессах, наблюдаемых при обработке де­талей па металлорежущих станках, можно рассчитать три составляющие:

детерм и и и рова иную, поддающуюся аналитическому расчету;

вероятностную, определяемую вероятностными зако­номерностями реализации тех или иных значений по­грешностей;

чисто случайную, принципиально не поддающуюся никакому предсказанию.

Наличие чисто случайной и вероятностной составля­ющих приводит к необходимости рассматривать станоч­ную систему как «плохо организованную», в которой физические процессы, определяемые влиянием, возмущаю­щих факторов, не поддаются раздельному функциональ­ному описанию. В связи с этим широкое распространение получили статистические методы анализа точности обра­ботки на станках [4, 12].

Величины погрешностей отдельных параметров каче­ства деталей, изготовленных на предварительно настро­енном станке в одинаковых условиях, не совпадают, что является результатом действия многих случайных фак­торов, по-разному взаимодействующих в каждом рабо­чем цикле. Изменение погрешностей параметров обраба­тываемых деталей носит характер случайных, в общем случае нестационарных процессов. Однако при достаточ­ной стабильности технологического процесса, т. е. при постоянстве режимов и условий обработки на станках, не наблюдается значительного изменения характеристик рассеивания случайных значений погрешностей. Это дает возможность оценивать точность обработки на станках при нормированных условиях эксплуатации с помощью параметров распределений погрешностей обрабатывае­мых изделий.

Недостаток этого метода в том, что для определения точностных характеристик необходимы результаты об­работки деталей на уже существующем оборудовании, что не позволяет использовать его на стадии проектиро­вания.

Наибольший интерес представляют методы расче­та вероятностных характеристик точности, которые могут быть использованы на стадии создания оборудования, один из которых будет рассмотрен ниже.

ТОЧНОСТЬ ОБРАБОТКИ

Под точностью обработки понимают степень соответствия обработанной детали техническим требованиям чертежа в отношении точности размеров, формы и расположения поверхностей. Все детали, у которых отклонения показателей точности лежат в пределах установленных допусков, пригодны для работы.

В единичном и мелкосерийном производстве точность деталей получают методом пробных рабочих ходов, т.е. последовательным снятием слоя припуска, сопровождаемым соответствующими измерениями. В условиях мелко- и среднесерийного производств применяют обработку с настройкой станка по первой пробной детали партии или эталонной детали. В крупносерийном и массовом производствах точность детали обеспечивают методом автоматического получения размеров на предварительно настроенных станках-автоматах, полуавтоматах или автоматических линиях.

В условиях автоматизированного производства в станок встраивают подналадчик, представляющий собой измерительное и регулировочное устройство, которое в случае выхода размера обрабатываемой поверхности за пределы поля допуска автоматически вносит поправку в -систему станок — приспособление — инструмент — заготовка (в технологическую систему) и подналаживает ее на заданный размер.

На станках, выполняющих обработку за несколько рабочих ходов (например, на круглошлифовальных), применяют устройства активного контроля, которые измеряют размер детали в процессе обработки. При достижении заданного размера устройства автоматически отключают подачу инструмента. Применение этих устройств повышает точность и производительность обработки путем уменьшения времени на вспомогательные операции. Эта цель достигается также путем оснащения металлорежущих станков системами адаптивного управления процессом обработки. Система состоит из датчиков для получения информации о ходе обработки и регулирующих устройств, вносящих в нее поправки.

На точность обработки влияют: погрешности станка и его износ; погрешность изготовления инструментов, приспособлений и их износ; погрешность установки заготовки на станке; погрешности, возникающие при установке инструментов и их настройке на заданный размер; деформации технологической системы, возникающие под действием сил резания; температурные деформации технологической системы; деформация заготовки под действием собственной массы, сил зажима и перераспределения внутренних напряжений; погрешности измерения, которые обусловлены неточностью средств измерения, их износом и деформациями и др. Эти факторы непрерывно изменяются в процессе обработки, вследствие чего появляются погрешности обработки.

Собственная точность станков (в ненагруженном состоянии) регламентирована государственными стандартами для всех типов станков. При эксплуатации происходит изнашивание станка, в результате которого его собственная точность снижается.

Режущий инструмент имеет погрешности размеров, формы и взаимного расположения элементов, полученных при его изготовлении. Эти погрешности предопределяют погрешности обработки. Износ инструмента влияет на точность обработки в партии заготовок при одной настройке станка (например, при растачивании отверстий износ резца приводит к появлению конусообразности).

Процесс резания сопровождается выделением теплоты. В результате изменяется температурный режим технологической системы, что приводит к дополнительным пространственным перемещениям элементов станка вследствие изменения линейных размеров деталей и появлению погрешностей обработки. Заготовки, имеющие малую жесткость (L/D > 10, где L — длина заготовки; D — ее диаметр), под действием сил резания и их моментов деформируются. Например, длинный вал небольшого диаметра при обработке на токарном станке в центрах прогибается. В результате диаметр на концах вала получают меньше, чем в середине, т.е. возникает бочкообразность.

В отливках и кованых заготовках в результате неравномерного остывания возникают внутренние напряжения. При резании вследствие снятия верхних слоев материала заготовки происходят перераспределение внутренних напряжений и ее деформация. Для уменьшения напряжений отливки подвергают естественному или искусственному старению. Внутренние напряжения появляются в заготовке при термической обработке, холодной правке и сварке.

| следующая лекция ==>
ТОЧНОСТЬ ДЕТАЛЕЙ | ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет