Чистовая обработка деталей при токарной обработке

Точение как способ обработки металла до нужной формы

Чтобы получить из металлической болванки черновую заготовку, а затем и необходимую деталь, используется такой тип обработки, как точение, наряду с некоторыми другими видами токарных операций.

1 Что такое точение – черновое и чистовое

Деревянные резные балясины, ножки столиков и стульев, металлические детали в узлах механизмов – все эти изделия сложной формы почти наверняка были изготовлены на токарном станке. Конечно, многие виды продукции из стали и других сплавов можно получить литьем, ковкой, штамповкой и фрезерованием, однако в большинстве случаев нужный результат обеспечивают при помощи простейшей операции, а именно – точения. Так называют любой вид обработки внешней торцевой или вращающейся поверхности посредством воздействия на нее лезвием резца. Применение режущего инструмента для внутренних поверхностей осуществляется в процессе растачивания.

Операции точения возможны только при вращении детали, закрепленной в кулачковом или цанговом механизме фиксирующего патрона и при значительной длине прижатой центром задней бабки. По большей части обработке подвергаются цилиндрические заготовки, за исключением случаев торцевого подрезания и растачивания отверстий, когда допускаются иные формы болванок, с закреплением их только в кулачковом патроне. Если передача вращения применяется на сам резец, это уже не точение, а фрезерование. Именно поэтому при расточке к внутренней поверхности вращающейся обрабатываемой детали подводится неподвижно закрепленный инструмент.

Черновое точение отличается от тонкого чистового силой воздействия лезвия резца на торцевую или цилиндрическую поверхность, а также скоростью вращения детали, что в итоге дает очень малое сечение образующейся стружки. Иными словами, обтачивание применяется для удаления мельчайших шероховатостей, а точение – для придания необходимой формы металлической или деревянной заготовке. При этом тонкая обработка осуществляется с минимальной глубиной погружения резца: до 0,3 миллиметра при первых проходах и до 0,05 миллиметров при завершающих.

2 Как происходит растачивание отверстий?

В токарных работах используется огромное количество разнообразных резцов, ряд которых необходим для расточных операций. При этом выбор инструмента для черновых проходов зависит от того, сквозное отверстие нужно обрабатывать или глухое. Отдельные резцы применяются для чистового растачивания, независимо от типа отверстия. Рассматриваемый вид токарной обработки деревянной или металлической заготовки осуществляется при закреплении последней в кулачковом патроне, без упора в центр задней бабки. Инструмент, зажатый в держателе, располагается по оси вращения заготовки, ею выполняют поступательное движение с постепенным отклонением от центра.

Как правило, растачивание отверстий осуществляется после сверления, однако в некоторых случаях необходимо произвести внутреннюю обработку канавок или пазов, сделанных на фрезерном станке. Каждый раз при этом происходит увеличение диаметра по всей глубине отверстия или на определенном его отрезке. Первый тип работ осуществляется проходным инструментом, а второй вариант имеет место при необходимости вытачивания внутренней канавки с помощью прорезного лезвия. Также с помощью расточного инструмента может быть выполнена обработка внутреннего торца глухого углубления, для чего используются подрезной резец.

Все инструменты, использующиеся при растачивании, имеют меньшую жесткость, чем резцы для наружных операций, вследствие чего скорость вращения детали следует понижать на 10-20 % в сравнении с внешними токарными работами. Также при обработке углублений существуют и другие подводные камни, требующие удвоенного внимания. В частности, очень трудно наблюдать за протеканием процесса, так как стружка снимается внутри отверстия. Еще одна сложность – необходимость выдвигать резец из держателя несколько дальше, чем требует глубина глухого отверстия, из-за чего обработка удаленных отрезков внутренней стенки может быть нарушена пружинящим инструментом.

3 Подрезание металла – поэтапный обзор операции

Выше уже упоминался специальный подрезной инструмент для токарных работ, необходимый для обработки торцевых поверхностей, а также уступов, как внешних, так и внутренних, расположенных в углублении. Перечисленные операции выполняются движением резца вдоль оси вращения, от центра к краю торца. Лезвие подрезного инструмента обычно имеет две заточенные кромки: длинную, которая располагается под небольшим углом к обрабатываемой поверхности, и короткую, отклоненную на 15-20 градусов от оси вращения заготовки.

Однако помимо вышеназванного резца существуют и другие, например, упорный и отогнутый, причем второй бывает проходным. Заточка обоих вариантов несколько отличается от описанной ранее. Упорный тип удобен тем, что им можно выполнять операции с продольной и поперечной подачей. В тех же случаях, когда подрезание выполняется в непосредственной близости от патрона, а также при обработке труднодоступных уступов в отверстиях, возникает необходимость в отогнутых резцах, в том числе и проходных. Последними обычно работают с поперечной подачей.

Примечательно, что все операции на торцах можно выполнять не только зажатием в кулачках, но и при фиксации заготовки с упором в центр задней бабки. Правда, в этом случае рекомендуется применять так называемый «полуцентр», на треть толщины которого по всей длине отсутствует сегмент. Таким образом, обеспечивается возможность обрабатывать весь торец от края к центру подрезным лезвием. При работе с торцом зажатой в патроне детали лучше действовать проходным отогнутым инструментом.

4 Тонкое обтачивание различных поверхностей

Процесс обтачивания, по сути, является аналогом тонкого чистового точения, о котором говорилось выше. Выполняется эта операция при высокой частоте вращения заготовки, от 1500 до 2000 оборотов в минуту. При этом подача резца выполняется на шаг, не превышающий 0,6 ширины режущей кромки на один оборот детали. Следует отметить, что лезвие инструмента обычно применяется широкое, располагается оно параллельно обрабатываемой поверхности. При минимальной глубине резания после обтачивания не требуется шлифование металла, поскольку все шероховатости снимаются при чистовых проходах.

Режущая кромка инструмента должна обладать высокой прочностью, лезвия выполняются из твердых сплавов, а также снабжаются алмазными и эльборовыми вставками.

Как правило, операции обтачивания применяются для цветных металлов, а также их сплавов, значительно реже им подвергаются заготовки из стали и чугуна. Скорости вращения для каждого вида металла выбираются разные. В частности, для чугуна необходима скорость 100-150 метров в минуту, стальные детали обтачиваются при частоте оборотов 150-250 метров в минуту, а цветные металлы и их сплавы обрабатываются при вращении кулачкового патрона от 1000 метров в минуту.

Режимы резания при токарной обработке: описание, особенности выбора и технология

Для того чтобы обычную заготовку превратить в подходящую деталь для механизма, используют токарные, фрезерные, шлифовальные и прочие станки. Если фрезерные необходимы для изготовления более сложных деталей, например, зубчатых колес, нарезания шлицов, то токарные применяются для создания более простых деталей и придания им необходимой формы (конус, цилиндр, сфера). Режимы резания при токарной обработке очень важны, поскольку, например, для ломкого металла необходимо использовать меньшую скорость вращения шпинделя, чем для прочного.

Особенности токарной обработки

Для того чтобы выточить определённую деталь на токарном станке, как правило, используют резцы. Они бывают самых различных модификаций и классифицируются по виду обработки, направлению подачи и форме головки. Кроме того, резцы выполняются из различных материалов: легированная сталь, углеродистая, инструментальная, быстрорежущая, вольфрам, твердый сплав.

Выбор того или иного зависит от материала обрабатываемой детали, её формы и способа обтачивания. Режимы резания при токарной обработке обязательно учитывают эти все нюансы. При точении обрабатываемая деталь закрепляется в шпинделе, он выполняет главные вращательные движения. В суппорте устанавливается инструмент для обработки, и движения подачи совершаются непосредственно им. В зависимости от используемого станка можно обрабатывать как очень мелкие детали, так и крупные.

Основные элементы

Какие элементы режимов резания при токарной обработке могут быть использованы? Несмотря на то что точение – это не всегда очень легкая операция, основные его элементы – это скорость, подача, глубина, ширина и толщина. Все эти показатели зависят в первую очередь от материала обрабатываемой детали и размера. Для очень маленьких деталей, например, скорость резания выбирают наименьшую, поскольку даже 0,05 миллиметров, которые случайно срезали, могут привести к браку всей детали.

Кроме того, очень важными показателями, от которых зависит выбор режимов резания при токарной обработке, являются этапы, на которых она производится. Рассмотрим основные элементы и этапы металлорезания более детально.

Черновая, получистовая и чистовая обработка

Превращение заготовки в необходимую деталь – сложный и трудоемкий процесс. Он делится на определенные этапы: черновую, получистовую и чистовую обработку. Если деталь несложная, то промежуточный (получистовой) этап, как правило, не учитывается. На первом этапе (черновом) деталям придают необходимую форму и примерные размеры. При этом обязательно оставляют припуски на последующие этапы. Например, дана заготовка: D=70 мм и L= 115 мм. Из неё необходимо выточить деталь, первым размером которой будет D1 = 65 мм, L1 = 80 мм, а вторым – D2 = 40 мм, L2 = 20 мм.

Читайте также  Обработка отверстий сверление зенкование зенкерование развертывание

Черновая обработка будет заключаться в следующем:

  1. Подрезать торец на 14 мм.
  2. Проточить диаметр по всей длине на 66 мм
  3. Проточить второй диаметр D2 = 41 мм на длину 20 мм.

На этом этапе мы видим, что деталь была обработана не полностью, но максимально приближена к её форме и размеру. А припуск на общую длину и на каждый из диаметров составил по 1 мм.

Чистовая обработка данной детали будет заключаться в следующем:

  1. Выполнить чистовое подрезание торца с необходимой шероховатостью.
  2. Проточить по длине 80 мм в диаметр 65 мм.
  3. Выполнить чистовое точение по длине 20 мм в диаметр 40 мм.

Как мы видим, чистовая обработка требует максимальной точности, по этой причине и скорость резания в ней будет меньше.

С чего начать расчет

Для того чтобы рассчитать режим резания, в первую очередь необходимо выбрать материал резца. Он будет зависеть от материала обрабатываемой детали, вида и этапа обработки. Кроме того, более практичными считаются резцы, в которых режущая часть съёмная. Иными словами, необходимо подобрать лишь материал режущей кромки и закрепить её в режущий инструмент. Самым выгодным режимом считается тот, при котором затраты на изготавливаемую деталь будут наименьшими. Соответственно, если выбрать не тот режущий инструмент, он, скорее всего, сломается, а это принесет убытки. Так как же определить необходимый инструмент и режимы резания при токарной обработке? Таблица, представленная ниже, поможет выбрать оптимальный резец.

Толщина срезаемого слоя

Как уже говорилось ранее, каждый из этапов обработки требует той или иной точности. Очень важными эти показатели являются именно при вычислении толщины срезаемого слоя. Режимы резания при токарной обработке гарантируют подбор самых оптимальных значений для вытачивания деталей. Если же ними пренебречь и не выполнить расчет, то можно сломать как режущий инструмент, так и саму деталь.

Итак, в первую очередь необходимо выбрать толщину срезаемого слоя. Когда резец проходит по металлу, он срезает определенную его часть. Толщина или глубина резания (t) – это расстояние, которое будет снимать резец за один проход. Важно учитывать, что для каждой последующей обработки необходимо выполнять расчет режима резания. Например, следует выполнить наружное точение детали D = 33,5 мм на диаметр D1=30,2 мм и внутренне растачивание отверстия d = 3,2 мм на d2 = 2 мм.

Для каждой из операций расчет режимов резания при токарной обработке будет индивидуальным. Для того чтобы рассчитать глубину резания, необходимо из диаметра после обработки вычесть диаметр заготовки и разделить на два. На нашем примере получится:

t = (33,5 — 30,2) / 2 = 1,65 мм

Если диаметры имеют слишком большую разницу, например 40 мм, то, как правило, её необходимо разделить на 2, и полученное число будет количеством проходов, а глубина будет соответствовать двум миллиметрам. При черновом точении можно выбирать глубину резания от 1 до 3 мм, а при чистовом – от 0,5 до 1 мм. Если же выполняется подрезание торцевой поверхности, то толщина снимаемого материала и будет глубиной резания.

Назначение величины подачи

Расчет режимов резания при токарной обработке невозможно представить без величины перемещения режущего инструмента за один оборот детали – подачи (S). Её выбор зависит от требуемой шероховатости и степени точности обрабатываемой детали, если это чистовая обработка. При черновой допустимо использовать максимальную подачу, исходя из прочности материала и жесткости её установки. Выбрать необходимую подачу можно при помощи таблицы ниже.

После того как S была выбрана, её необходимо уточнить в паспорте станка.

Скорость резания

Очень важными значениями, влияющими на режимы резания при токарной обработке, являются скорость резания (v) и частота вращения шпинделя (n). Для того чтобы вычислить первую величину используют формулу:

V = (π х D х n) / 1000,

где π – число Пи равное 3,12;

D – максимальный диаметр детали;

n – частота вращения шпинделя.

Если последняя величина остается неизменной, то скорость вращения будет тем больше, чем больше диаметр заготовки. Данная формула подходит, если известна скорость вращения шпинделя, в противном случае необходимо использовать формулу:

где t и S – уже рассчитанная глубина резания и подача, а Cv, Kv, T – коэффициенты, зависящие от механических свойств и структуры материала. Их значения можно взять в таблицах режимов резания.

Калькулятор режимов резания

Кто же может помочь выполнить расчет режимов резания при токарной обработке? Онлайн-программы на многих интернет-ресурсах справляются с данной задачей не хуже человека.

Существует возможность использовать утилиты как на стационарном компьютере, так и на телефоне. Они очень удобные и не требуют особых навыков. В поля необходимо ввести требуемые значения: подачу, глубину резания, материал заготовки и режущего инструмента, а также все необходимые размеры. Это позволит получить комплексный и быстрый расчет всех необходимых данных.

Токарная обработка — основные действия и маленькие хитрости

Содержание:

  1. 1. Обработка наружных цилиндрических поверхностей
  2. 2. Обработка торцевых поверхностей
  3. 3. Обработка канавок
  4. 4. Обработка отверстий
  5. 5. Основные принципы безопасности

С помощью токарного станка создается множество самых различных деталей: здесь и промышленное производство частей механизмов машин (втулки, гайки, валы, фланцы, кольца и диски), и изготовление декоративных элементов (ножек и ручек мебели, игрушек, подсвечников, светильников и многого другого). И в том и в другом случае любая готовая деталь — это совокупность различных операций, которые имеют свои правила выполнения и особенности, а также требуют определенных настроек оборудования. Это все важно учитывать, чтобы результат всегда оправдывал Ваши ожидания, не было опасности сломать оснастку или повредить заготовку. В данной статье мы рассмотрим основные операции. И для удобства мы разделим обработку металла и дерева.

Обработка наружных цилиндрических поверхностей

К ней относится обтачивание до ровного цилиндра и вытачивание на нем ступеней.

Металл. Для данных операций используются проходные резцы. Они могут быть для чернового или чистового точения. Первые предназначены для обработки деталей на высокой скорости резанья со снятием стружки большого сечения. С их помощью заготовки обтачиваются до необходимого диаметра и устраняются все дефекты, например, неровности. Резцы для чистовой обработки применяются для снятия тонкого слоя материала и финальной обточки. Данный вид оснастки бывает трех типов: прямого, отогнутого и упорного. От конкретно выбранного типа будет зависеть главный угол оснастки — ф.

  • Прямые – 45,60 и 70°.
  • Отогнутые — 45°.
  • Упорные — 90°.

Ф определяет стойкость режущего инструмента и наиболее подходящую скорость резания. Чем он будет меньше, тем больше можно будет установить скорость резания (от 0,3 до 1,5 мм/об при черной и от 0,1 до 0,4 мм/об при чистовой обработке).

Обратите внимание: если Вы устанавливаете максимально высокую скорость важно, чтобы жесткость системы также была высокой (зависит от веса станка, чем он больше, тем выше жесткость), иначе могут возникнуть вибрации.

Дерево. Здесь все обстоит несколько проще. Для обработки цилиндрических деревянных брусков Вам понадобится полукруглая стамеска. Скорость вращения шпинделя устанавливается от 1000 до 2000 об/мин, выбор в данном случае зависит от формы заготовки, чем она ближе к ровному цилиндру, тем выше выставляются обороты. Работу надо начинать плавно: обоприте стержень стамески об упор так, чтобы резец соприкасался с поверхностью. После чего медленно начинайте поднимать рукоятку оснастки вверх, пока режущая кромка не начнет срезать ровную стружку, которая хорошо скручивается.

Чистовую обточку поверхности проводят серединой режущей части стамески-косяка по аналогии.

Обработка торцевых поверхностей

Сюда относится подрезание в размер и получение ровного торца детали.

Металл. В данном случае также используются проходные отогнутые и упорные резцы. Рекомендованными режимами резания являются:

  • Черновая обработка – скорость подачи 0,3-0,7 мм/об, глубина резания 2-5 мм.
  • Чистовая – скорость 0,1-0,3 мм/об, глубина – 0,7-1мм.
Читайте также  Обработка дна автомобиля от ржавчины

При этом при поперечной подаче устанавливается скорость на 20% больше, чем при продольной подаче.

Дерево. Заготовка крепится на планшайбе и не подпирается с обратной стороны центром. Упор устанавливают поперек станка. Далее по аналогии с обработкой цилиндрических поверхностей режущий инструмент плавно подают к поверхности, работая от центра к периферии торца. В данном случае могут использоваться как полукруглые стамески (черновая обработка), так и стамески-косяки (чистовая обработка). Скорость вращения шпинделя выставляют по максимуму.

Обработка канавок

Металл. Канавки в металлических деталях выполняются отрезными и прорезными резцами. Последние могут быть прямые и отогнутые (левые и правые). В данном случае используется поперечная ручная подача. Подведите резец к нужному месту и медленно поворачивайте ручку перемещения поперечных салазок. Дойдя до необходимой глубины, также аккуратно выведите резец из заготовки. Когда выполняются канавки шириной превышающие 5 мм, работа делается в несколько проходов. Последним является чистовая обработка, для которой нужно оставить 0,5-1 мм припуска. Её следует проводить тем же резцом.

Обратите внимание: резцы, использующиеся для выполнения канавок, нужно очень тщательно центровать, если они будут установлены выше, хоть на 0,1-0,2 мм, может произойти их поломка, а ниже – останется необработанный участок.

Дерево. В зависимости от необходимой формы канавки используются стамески-косяки, двухголовые резаки или штихели. При данной операции также важно вытачивать канавку не спеша, медленно погружая режущую кромку инструмента в материал и, снимая тонкую стружку.

Обработка отверстий

Выполняется с помощью сверлильного патрона различными сверлами возвратно-поступательным движением. При изготовлении отверстий глубиной больше, чем их диаметр, оснастку периодически выводят из заготовки, очищая канавки и саму полость от стружки. Во время обработки деталей из стали или алюминия рекомендуется использовать СОЖ для уменьшения трения. Скорость подачи устанавливается также в зависимости от материала изготовления детали. При диаметре отверстия 5-30 мм это:

Сталь – 0,1-0,3 мм/об.
Чугун – 0,2 -0,6 мм/об.

Операция для финальной обработки отверстий, сглаживания мелких неровностей и получения высокой точности с помощью разверток. Скорость подачи:

Сталь – 0,5-2 мм/об.
Чугун – 1-4 мм/об.

Это необходимо когда нужный диаметр отверстия превышает диаметр стандартных сверл и зенкеров. В этом случае применяются расточные резцы. Так как на них идет высокая нагрузка образуется высокий уровень вибраций при работе, поэтом снимается стружка очень небольшого сечения на маленькой скорости резания.

Продольная подача – 0,08-0,2 мм/об.
Скорость резания – 25 м/мин (резцы из быстрорежущей стали), 50-100 мм/об (твердосплавные).

Подача – 0,05-0,1 мм/об.
Скорость – 40-80 м/мин и 150-200 м/мин соответственно.

И это далеко не полный список того, что можно делать с помощью токарного станка. Комбинируя виды операций можно получить самые различные детали. Если это металл, то валы, втулки, шайбы, штуцеры, вилки, болты, гайки и т.д., которые могут пригодиться как в профессиональном машиностроении, так и в частном производстве. Кроме того возможно изготовление и ножек мебели, дверных ручек и прочего. При обработке же дерева на токарном станке делаются игрушки, посуда, мебель, подсвечники, вазы, наличники на окна и многое другое, чем многие мастера успешно зарабатывают.

Основные принципы безопасности

При выполнении любой из операций очень важно соблюдать некоторые правила, чтобы не испортить деталь, не сломать резец и не получить травму.

  • Не пренебрегайте защитной экипировкой (роба, очки, головной убор, закрытая обувь) чтобы не получить ожог и не пораниться стружкой или осколками материала.
  • Ни в коем случае не работайте в перчатках!
  • Пользуйтесь только хорошо заточенным режущим инструментом, а в случае токарных станков по металлу ещё и точно отцентрованный и прочно закрепленный.
  • При работе стамесками плотно удерживайте их двумя руками.
  • Перед тем как приступить к формированию детали, проведите черновую обработку, срезав все неровности на низкой скорости подачи, иначе Вы можете сломать оснастку.
  • Не отвлекайтесь, не оставляйте включенный станок без присмотра.
  • Не торопитесь при выполнении операций требующих ручной подачи, рассчитывайте правильно свои силы.

Перед тем как начать работу на любом токарном станке потренируйтесь на ненужных заготовках выполнять различные операции, это поможет Вам выявить особенности оборудования и добиться более высокой точности и производительности. Следуя всем перечисленным нами указаниям и рекомендациям, Вы получите только удовлетворительный результат, избегая неприятных последствий.

Токарная обработка металла — все о технологии токарных работ

К наиболее распространенным методикам изготовления деталей с заданными геометрическими параметрами относится токарная обработка металла. Суть данной методики, позволяющей также получать поверхность с требуемой шероховатостью, заключается в том, что с заготовки убирают лишний слой металла.

Процесс токарной обработки металла

Принципы токарной обработки

Технология токарных работ по металлу предполагает использование специальных станков и режущего инструмента (резцы, сверла, развертки и др.), посредством которого с детали снимается слой металла требуемой величины. Токарная обработка выполняется за счет сочетания двух движений: главного (вращение заготовки, закрепленной в патроне или планшайбе) и движения подачи, совершаемого инструментом при обработке деталей до заданных параметров их размера, формы и качества поверхности.

За счет того, что существует множество приемов совмещения этих движений, на токарном оборудовании работают с деталями различной конфигурации, а также осуществляют целый перечень других технологических операций, к которым относятся:

  • нарезание резьбы различного типа;
  • сверление отверстий, их растачивание, развертывание, зенкерование;
  • отрезание части заготовки;
  • вытачивание на поверхности изделия канавок различной конфигурации.

Основные виды токарных работ по металлу

Благодаря такой широкой функциональности токарного оборудования на нем можно сделать очень многое. Например, с его помощью выполняют обработку таких изделий, как:

  • гайки;
  • валы различных конфигураций;
  • втулки;
  • шкивы;
  • кольца;
  • муфты;
  • зубчатые колеса.

Естественно, что токарная обработка предполагает получение готового изделия, которое соответствует определенным стандартам качества. Под качеством в данном случае подразумевается соблюдение требований к геометрическим размерам и форме деталей, а также степени шероховатости поверхностей и точности их взаимного расположения.

Для обеспечения контроля над качеством обработки на токарных станках применяют измерительные инструменты: на предприятиях, выпускающих свою продукцию крупными сериями, – предельные калибры; для условий единичного и мелкосерийного производства – штангенциркули, микрометры, нутрометры и другие измерительные устройства.

Измерительные инструменты, часто используемые в токарном деле

Первое, что рассматривают при обучении токарному делу, – это технология обработки металлов и принцип, по которому она осуществляется. Заключается этот принцип в том, что инструмент, врезаясь своей режущей кромкой в поверхность изделия, зажимает его. Чтобы снять слой металла, соответствующий величине такого врезания, инструменту надо преодолеть силы сцепления в металле обрабатываемой детали. В результате такого взаимодействия снимаемый слой металла формируется в стружку. Выделяют следующие разновидности металлической стружки.

Такая стружка формируется тогда, когда на высоких скоростях обрабатываются заготовки, выполненные из мягкой стали, меди, олова, свинца и их сплавов, полимерных материалов.

Образование такой стружки происходит, когда на небольшой скорости обрабатываются заготовки из маловязких и твердых материалов.

Стружка такого вида получается при обработке заготовок из материала, отличающегося невысокой пластичностью.

Формирование такой стружки свойственно для среднескоростной обработки заготовок из стали средней твердости, деталей из алюминиевых сплавов.

Виды стружки при токарной обработке

Режущий инструмент токарного станка

Эффективность, которой отличается работа на токарном станке, определяется рядом параметров: глубиной и скоростью резания, величиной продольной подачи. Чтобы обработка детали была высококачественной, необходимо организовать следующие условия:

  • высокую скорость вращения заготовки, фиксируемой в патроне или планшайбе;
  • устойчивость инструмента и достаточную степень его воздействия на деталь;
  • максимально возможный слой металла, убираемый за проход инструмента;
  • высокую устойчивость всех узлов станка и поддержание их в рабочем состоянии.

Скорость резки выбирается на основе характеристик материала, из которого сделана заготовка, типа и качества применяемого резца. В соответствии с выбранной скоростью резки выбирается частота вращения шпинделя станка, оснащенного токарным патроном или планшайбой.

При помощи различных типов резцов можно выполнять черновые или чистовые виды токарных работ, а на выбор инструмента основное влияние оказывает характер обработки. Изменяя геометрические параметры режущей части инструмента, можно регулировать величину снимаемого слоя металла. Выделяют правые резцы, которые в процессе обработки детали передвигаются от задней бабки к передней, и левые, движущиеся, соответственно, в обратном направлении.

Читайте также  Назначение режимов резания при токарной обработке

Основные типы токарных резцов

По форме и расположению лезвия резцы классифицируются следующим образом:

  • инструменты с оттянутой рабочей частью, ширина которой меньше ширины их крепежной части;
  • прямые;
  • отогнутые.

Различаются резцы и по цели применения:

  • подрезные (обработка поверхностей, перпендикулярных оси вращения);
  • проходные (точение плоских торцовых поверхностей);
  • канавочные (формирование канавок);
  • фасонные (получение детали с определенным профилем);
  • расточные (расточка отверстий в заготовке);
  • резьбовые (нарезание резьбы любых видов);
  • отрезные (отрезание детали заданной длины).

Качество, точность и производительность обработки, выполняемой на токарном станке, зависят не только от правильного выбора инструмента, но и от его геометрических параметров. Именно поэтому на уроках в специальных учебных заведениях, где обучаются будущие специалисты токарного дела, очень большое внимание уделяется именно вопросам геометрии режущего инструмента.

Углы токарного резца

Основными геометрическими параметрами любого резца являются углы между его режущими кромками и направлением, в котором осуществляется подача. Такие углы режущего инструмента называют углами в плане. Среди них различают:

  • главный угол – φ, измеряемый между главной режущей кромкой инструмента и направлением подачи;
  • вспомогательный – φ1, расположенный, соответственно, между вспомогательной кромкой и направлением подачи;
  • угол при вершине резца – ε.

Угол при вершине зависит только от того, как заточен инструмент, а вспомогательные углы можно регулировать еще и его установкой. При увеличении главного угла уменьшается угол при вершине, при этом уменьшается и часть режущей кромки, участвующей в обработке, соответственно, стойкость инструмента тоже становится меньше. Чем меньше значение этого угла, тем большая часть режущей кромки участвует как в обработке, так и в отводе тепла от зоны резания. Такие резцы являются более стойкими.

Практика показывает, что для токарной обработки не слишком жестких заготовок небольшого диаметра оптимальным является главный угол, величина которого находится в интервале 60–90 градусов. Если обрабатывать необходимо заготовку большого диаметра, то главный угол необходимо выбирать в интервале 30–45 градусов. От величины вспомогательного угла зависит прочность вершины резца, поэтому его не делают большим (как правило, он выбирается из интервала 10–30 градусов).

Особое внимание на уроках по токарному делу уделяется и тому, как правильно выбирать тип резца в зависимости от вида обработки. Так, существуют определенные правила, по которым обработку поверхностей того или иного типа выполняют с помощью резца определенной категории.

  • Обычные прямые и отогнутые резцы необходимы для обработки наружных поверхностей детали.
  • Упорный проходной инструмент потребуется для торцевой и цилиндрической поверхностей.
  • Отрезной резец выбирают для протачивания канавок и обрезки заготовки.
  • Расточные резцы применяются для обработки отверстий, просверленных ранее.

Отдельную категорию токарного инструмента составляют резцы, с помощью которых можно обрабатывать фасонные поверхности с длиной образующей линии до 40 мм. Такие резцы подразделяются на несколько основных типов:

  • по конструктивным особенностям: стержневые, круглые и призматические;
  • по направлению, в котором осуществляется обработка изделия: радиальные и тангенциальные.

Токарно-винторезный станок 1В625МП

Виды оборудования для токарной обработки

Из всех типов оборудования для токарной обработки наибольшее распространение и на крупных, и на мелких предприятиях получил токарно-винторезный станок. Причиной такой популярности является многофункциональность этого устройства, благодаря которой его с полным основанием можно назвать универсальным.

Перечислим основные элементы конструкции такого станка:

  • две бабки – передняя и задняя (в передней бабке размещают коробку скоростей станка; шпиндель с токарным патроном (или планшайбой), на задней бабке размещены продольные салазки и пиноль оборудования);
  • суппорт, в конструкции которого различают верхние и нижние салазки, поворотную плиту и резцедержатель;
  • несущий элемент оборудования – станина, установленная на две тумбы, в которых размещают электродвигатели.
  • коробка подач.

Токарный станок с ЧПУ

Все большее распространение получают станки, управление которыми осуществляется при помощи специальных компьютерных программ, – станки с ЧПУ. Конструкция таких станков отличается от обычной только тем, что в ней присутствует специальный блок управления.

В отдельные категории выделяют следующие виды станков токарной группы:

  • токарно-револьверное оборудование, применяемое для обработки деталей сложной конфигурации;
  • токарно-карусельные станки, среди которых различают одно- и двухстоечные;
  • многорезцовое полуавтоматическое оборудование, которое можно встретить на предприятиях, выпускающих свою продукцию крупными сериями;
  • обрабатывающие комплексы, на которых можно выполнять как токарные, так и фрезерные операции.

Без токарной обработки сегодня крайне сложно представить многие производственные отрасли. Поэтому данный вид работы с металлом продолжает развиваться, несмотря на и без того высокий уровень, позволяющий обеспечить высочайшее качество и скорость обработки.

Большая Энциклопедия Нефти и Газа

Чистовая токарная обработка

Чистовая токарная обработка состоит из следующих переходов: обтачивают переднюю направляющую, передний хвостовик, шейку, переходный конус, скосы и шейку замка; после переустановки обтачивают калибрующую часть, заднюю направляющую, снимают фаску у торца. [1]

Предварительная и чистовая токарная обработка наружных поверхностей поршня и предварительное точение канавок производятся на шестишпиндельных роторных токарных автоматах. Скорость резания до 300 м / мин; подача при точении наружной цилиндрической поверхности 0 5 мм / об, при точении торца 0 4 мм / об. Обработка ведется твердосплавными резцами. [2]

Черновую и чистовую токарную обработку наружных и внутренних поверхностей заготовки ротора выполняют за три операции на трех вертикальных токарных многорезцовых автоматах Щ734А ( фиг. После первой и второй операций производят поворот обрабатываемой детали на 180 с помощью кантователя. Токарные автоматы для первой и второй операций имеют правый и левый суппорты, а для третьей операции, кроме того, и вертикальный расточной шпиндель ( мод. [3]

После чистовой токарной обработки следует полирование, которое предназначено для уменьшения микрогеометрии шероховатости. Полирование образует гладкую поверхность, но оно не имеет целью доведение обрабатываемой поверхности до заданного размера. [4]

После чистовой токарной обработки целесообразно подвергать штоки накатке по цилиндрической части и конусам. [5]

Для чистовой токарной обработки применяют токарные станки, к которым предъявляют следующие требования: непрямолинейность продольного перемещения суппорта в горизонтальной плоскости на один метр его хода не более 0 02 мм, осевое биение ходового винта 0 015 мм. Станки устанавливают на специальных фундаментах на виброизолирующие опоры или коврики. Токарную обработку ротора, собранного в корпусных деталях УМБ, производят в приспособлении ( рис. 4.5), основание 4 ( станина) которого расположено рядом со станиной / станка. [6]

Далее осуществляют окончательную чистовую токарную обработку восстановленной части колеса . [7]

Четвертая операция — чистовая токарная обработка — предусматривает чистовое обтачивание наружной цилиндрической поверхности и торца венца, подрезку верхнего торца ступицы и снятие фаски под зубозакрутление. Эту операцию, обеспечивающую параллельность обоих торцов обрабатываемой детали, выполняют на вертикальном токарном станке мод. [8]

Операция IV — чистовая токарная обработка со стороны меньшего венца — производится на вертикальном многорезцовом токарном станке мод. Колесо автоматически устанавливается на шлице-вую оправку с базированием по шлицевому отверстию и торцу и также автоматически снимается с оправки по окончании обработки. [9]

Операция IV — чистовая токарная обработка зубчатого колеса — производится на вертикальном многорезцовом автомате мод. Зубчатое колесо устанавливается на шлицевую оправку и базируется по шлицевому отверстию и торцу. Чашечный резец 1 протачивает торец начисто, резец 2 обтачивает начисто наружную поверхность колеса, а резец 3 снимает фаску. [10]

Таким образом, черновая и чистовая токарная обработка наружных поверхностей конического колеса начинается на 3 — й рабочей позиции станка и полностью заканчивается на 8 — й рабочей позиции. [11]

На автоматической линии производят черновую и чистовую токарную обработку всех поверхностей ротора и статора, после чего ротор комплектуют со статором и в таком виде транспортируют на дальнейшую обработку шлифованием. [12]

Применяют на операциях шлифования и чистовой токарной обработки , требующих точного центрирования обрабатываемых деталей с базовой поверхностью детали, подготовленной по 2 или 3-му классам точности, погрешность после обработки составит не более 0 01 — 0 03 мм, при базовой поверхности, подготовленной по 4 и 5-му классам, погрешность обработки не превысит 0 04 — 0 06 мм. [13]

Многократные промеры приходится производить при чистовой токарной обработке деталей сложной конфигурации . [14]

На втором участке линии производятся: чистовая токарная обработка , накатка шеек, подступичных и средних частей, а также нарезание резьбы. Участок состоит из двух параллельных потоков. [15]