Какую кристаллическую решетку имеет железо?

Какую кристаллическую решетку имеет железо?

КАЧЕСТВЕННО

БЫСТРО

SEO оптимизация

адаптивная верстка

Ремонт в регионах

  1. Главная
  2. Строительные материалы
  3. Кристаллическое строение металлов
  4. Альфа-бета-сигма-гамма железо

Ярким примером аллотропии является железо, образующее в зависимости от температуры четыре основных аллотропических видоизменения, которые называют: α-Fе, β-Fe, γ-Fe, δ-Fe.

Аллотропические формы α-Fe — альфа железо, β-Fe — бета железо и δ-Fe — сигма железо имеют кристаллическую решетку в форме центрированного куба ( рис. 1, а).
Аллотропическая форма γ-Fe — гамма железо имеет кристаллическую решетку в форме куба с центрированными гранями (рис. 1, б).

Переход железа из одной формы в другую — при охлаждении происходит с выделением тепла, а при нагревании — с поглощением тепла. Это отмечается на графиках охлаждения или нагревания железа На рис. 2 дан схематический график охлаждения чистого железа.

Ha этой кривой при переходах одной аллотропической формы в другую наблюдаются площадки постоянных температур, а именно:
при t=1535°— затвердевание железа с образованием δ-Fe;

фото кристаллических решеток железа

при t= 1390°—переход δ-Fe — γ-Fe;

при t=898° —переход γ-Fe — β-Fe;

при t=775° —переход β-Fe — α-Fe.

При нагревании железа превращения совершаются в обраном порядке, причем переход β -Fe — > γ-Fe происходит при t= 910°
В γ-Fe атомы расположены более тесно, чем в β-Fe, поэьтому переход γ-Fe в β-Fe сопровождается увеличением объема, и наоборот, переход β-Fe в γ-Fe сопровождается уменьшена объема.
Фора γ-Fe не магнитна.

Форма α-Fe магнитна. Форма β-Fe не магнитна, но имеет такую же кристаллическую решетку, как магнитная форма α-Fe — поэтому в металлографическом отношении форма β-Fe отождествляется с формой α-Fe и обе формы условно объединяю под одним названием α-Fe.

Главную роль в технологических процессах горячей механической и термической обработки железоуглеродистых сплавов играют: α -Fe и γ-Fe.

Рис. 2 Кривая охлаждения железа

Важное значение для термообработки имеет свойство γ -Fe давать с углеродом твердые растворы. Наибольшая растворимость углерода в γ-Fe (до 1,7%) наблюдается при t=1130°. При повышении и понижении температуры от t= 1130° растворимость углерода в γ-Fe понижается.

Твердый раствор углерода и других элементов в γ-Fe называется аустенитом.
α-Fe не образует с углеродом устойчивых твердых растворов, подобно аустениту. Растворимость углерода в α -Fe ничтожна. Твердые растворы небольших количеств С и прочих элементов в α-Fe называют ферритом.

Кроме твердых растворов углерода в железе, в железоуглеродистых сплавах встречается химическое соединение железа с углеродом — карбид железа Fe3C, который называется цементитом. Цементит содержит С — 6,67 %.
Аустенит и феррит отличаются пластичностью, феррит, кроме того, — мягкостью. Цементит чрезвычайно тверд и хрупок.

Что такое перлит и эвтектоид

Наблюдения показывают, что этот переход происходит следующим образом: по достижении температур GS по границам Наблюдения показывают, что этот переход происходит следующим образом : по достижении температур GS по границам аустенитовых кристаллов выделяются первые порции α — Fe, т. е. феррита, количество которого постепенно увеличивается.

Так как феррит почти не растворяет углерода, то при переходе γ-Fe -> α-Fe концентрация углерода в остаточном аустените постепенно увеличивается и может быть определена по линии G S в зависимости от температуры. Процесс выделения феррита протекает так до тех пор, пока концентрация углерода не будет соответствовать точке 5, т. е. до С=0,83%, а температура не достигнет t=723°.

В точке S кривая GS пересекается с ES — кривой предельной растворимости углерода в аустените. Поэтому дальнейшее насыщение остаточного аустенита углеродом становится уже невозможным, и последующее охлаждение вызывает окончательный распад аустенита, который совершается при постоянной температуре t=723°.

При этом распаде завершается переход γ- Fe->α-Fe, а выделившийся из кристаллической решетки железа углерод образует частицы цементита F3C. Распад аустенита происходит в стесненном объеме в пределах каждого зерна, поэтому продукты распада (феррит и цементит) образуются в виде тесно перемешанных частиц, обычно в виде чередующихся пластинок феррита и цементита.

Схема изменений структуры сталей при переходе через критические точки

Этот продукт распада аустенита называется перлитом; так как перлит имеет строение, подобное эвтектике, то он называется эвтектоидом. Разница между эвтектикой и эвтектоидом заключается в том, что эвтектика образуется из жидкого раствора, а эвтектоид — из твердого.

Образование перлита начинается и заканчивается при постоянной t=723°. Так ппявляется феррито-перлитовая структура сталей, которая при дальнейшем охлаждении от t=723° не претерпевает больше никаких структурных изменений. На рисунке представлены микроструктуры чистого железа и стали при С =0,15% и при С=0,6% (увеличение 100) после травления по-шрованной поверхности микрошлифа 4% раствором HNO3 в этиловом спирте.

Рис. 1. — феррит в чистом железе. Рис. 2 Доэвтектоидная сталь с содержанием С=0,15%

На рис. 1, где показана микроструктура чистого железа, четко выявились границы между светлыми зернами феррита. На рис. 2 представлена микроструктура строительной стали (С=0,15%); светлые поля — это феррит, темные участки — перлит.
На рис. 3 приведена микроструктура машиностроительной стали (С=0,6%), из которой изготовляют оси, валы, шатуны и т. п.; большая часть шлифа занята перлитом, а феррит наблюдается только в виде тонкой сетки.
Чем больше углерода, тем больше в структуре стали перлита, состав перлита одинаков (С=0,83%). Строение перлита обычно пластинчатое (рис. 4).

Рис. 3 Доэвтектоидная сталь с содержанием С=0,6%. Рис. 4 Эвтектоидная сталь (пластинчатый перлит).

Феррит, как было указано выше, представляет собой наиболее мягкую пластичную составляющую железоуглеродистых сплавов; цементит, входящий в состав перлита, наиболее твердую и хрупкую, поэтому с увеличением содержания углерода увеличивается прочность и твердость стали, но пластичность и вязкость уменьшаются

Чтобы строительная сталь была достаточно пластичной, количество перлита в ней не должно превосходить 25%, что соответствует содержанию углерода до 0,2%.

В. тех деталях, от которых требуется большая прочность и твердость, но допустимы меньшая пластичность и вязкость (детали машин), применяются стали с большим количеством перлита, с содержанием С до 0,6%. В строительном деле такие стали применяются, например, для изготовления лопат, опорных частей мостовых ферм.

Возникновение цементно-перлитовой структуры

В сплавах, содержащих больше 0,83% углерода, структурные изменения при переходе через линии АС и А1Е протекают так же. Поэтому ниже линии А1Е структура затвердевшего сплава представляет собой аустенит. При дальнейшем охлаждении структурные изменения наступают тогда, когда достигнута SE —линия предельной растворимости углерода в аустените.

Так как при снижении температуры ниже линии SE растворимость углерода в аустените снижается, то из аустенита выделяется вторичный цементит, который выпадает обычном в виде сетки, окружающей аустенитовые зерна. Благодаря этому содержание углерода в аустените уменьшается и при t=723° доходит до С=0,83%, что соответствует эвтектоидному составу. Дальнейшее охлаждение вызывает распад аустенита, который постоянной температуре t=723° переходит в перлит. Таким образом возникает цементно-перлитовая структура, которая при дальнейшем охлаждении уже не претерпевает изменений.

На рис. 1 цементит заметен в виде тонкой светлой сети окаймляющей темные зерна перлита, а на рис. 2 в виде темпе сетки. Стали с цементито-перлитовой структурой вследствие слишком малых пластичности и вязкости неприменимы для изготовления строительных конструкций и деталей машин. Из них делают инструменты, которым термической обработкой придают необходимую высокую твердость.

Рис.1 Заэвтектоидная сталь (после травления 4% раствором HNO3 в этиловом спирте. Рис.2 Заэвтектоидная сталь ( после травления пикратом натрия)

Несколько иначе протекают структурные изменения в сплавах при содержании С>1,7%. Например, из жидкого сплава с содержанием С в пределах 1,7—4,3%, превышающим предельную растворимость углерода в аустените (С=1,7%), по достижении температур линии АС начинают выделяться дендриты аустенита.

Этот процесс продолжается до тех пор, пока не будет достигнута температура линии ЕС. Концентрация углерода в выпадающих дендритах аустенита постепенно изменяется по линии А1Е. Концентрация углерода в жидком растворе увеличивается по линии АС и при t=1130° достигает С=4,3%, т. е. эвтектической концентрации. Дальнейшее охлаждение вызывает полный переход жидкого раствора, достигшего эвтектической концентрации, в твердое состояние.

Этот переход происходит при постоянной температуре t= 1130°; в результате образуется эвтектика, представляюшая собой смесь частиц аустенита и цементита—ледебурит. Таким образом, рассматриваемый сплав непосредственно после затвердевания будет состоять из аустенита и ледебурита. Дальнейшее охлаждение ниже t=1130° вызывает (вследствие уменьшения растворимости углерода по линии ES) выделение вторичного цементита из дендритов аустенита и из аустенита, входящего в состав ледебурита.

Рис. 3 Белый чугун (микроструктура — перли + цеменит + ледебурит)

Выделение вторичного цементита наблюдается при падении температуры в интервале 1130—723°, причем при снижении температуры до t=723° концентрация углерода в остаточном аустените снижается до эвтектоидной концентрации, т. е. до С=0,83%. Дальнейшее охлаждение вызывает окончательный распад остаточного аустенита.

Этот распад происходит при постоянной температуре t=723°, причем весь аустенит (и выпавший в виде дендритов и входящий в состав ледебурита) переходит в перлит. Таким образом, ниже t=723° в структуре рассматриваемого сплава (рис. 3) содержится перлит, вторичный цеменит и видоизмененный ледебурит, состоящий из цеменита (основная масса) и перлита (округлые вкрапления).

Обычно и первоначальный ледебурит и видоизмененный объединяют общим названием ледебурит. Дальнейшее охлаждение не вызывает изменений в структуре сплава.

Кристаллическое строение

МАТЕРИАЛОВЕДЕНИЕ

Вещества могут находиться в трех агрегатных состояниях: твердом, жидком и газообразном. Переход из твёрдого состояния в газообразное называется сублимацией.

Все металлы являются телами кристаллическими.

Для каждого металла характерна своя пространственно- кристаллическая решетка с дальним порядком расположения атомов (определенное расположение атомов на любом расстоянии).

В твердых телах порядок расположения атомов закономерен. Расположение атомов можно представить в виде элементарных кристаллических ячеек. Всего существует 14 типов решеток: для металлов характерны 3 типа:

1. Объемно — центрированная кубическая (ОЦК);

2. Гране — центрированная кубическая (ГЦК);

3. Гексагональная плотно упакованная (ГПУ).

Железо имеет два варианта кристаллических решеток:

— объемно-центрированную кубическую: атомы располагаются в центре куба и по его вершинам;

— гранецентрированную кубическую: атомы располагаются в центрах граней и по вершинам куба.

Читайте также  Что такое стусло и как им пользоваться?

Ряд металлов изменяет тип кристаллической решетки при изменении температуры, такое свойство металлов называется полиморфизмом (многоформие, аллотропия). Для железа (Fe) при температуре до 911 °C — ОЦК; от 911 до 1392 °C — ГЦК; свыше 1392 °C — ОЦК.

Металлы состоят из большого числа кристаллов неправильной формы, которые называются зернами. В реальных металлах кристаллическая решетка не является идеальной. Внутренняя структура зерна имеет дефекты.

Дефекты кристаллической решетки:

1. Точечные (нульмерные);

2. Линейные (одномерные);

3. Поверхностные (двухмерные);

4. Объемные (трехмерные).

Незанятые атомами места называются «вакансией». Атомы других элементов могут замещать атомы или внедрятся в решетку. Монолитность сварных соединений обеспечивается появлением атомно-молекулярных связей между элементарными частицами соединяемых веществ: ковалентной, ионной, межмолекулярной, металлической. Для соединения материалов необходимо обеспечить контакт по стыкуемой поверхности и активизировать ее. Энергия активации соединяемым поверхностям передается в виде теплоты, упругопластической деформации, электронного или иного вида облучения. Энергия необходима для обрыва связей между атомами вещества и внешней средой, а также для перехода их в активное состояние.

Металлическая связь (решетка) характеризуется достаточной прочностью и пластичностью и зависит от типа и количества элементов решетки.

К объемным дефектам относятся трещины, непровары, несплавления, поры, шлаки (имеют значительные размеры в 3-х измерениях).

Упрощённая классификацияжелезоуглеродистых сплавов

Условно считается, что железоуглеродистые сплавы, содержащие менее 2,14% углерода – стали, более 2,14% — чугуны. К сплавам относят соединения, содержащие менее 50% железа.

Углеродистые стали в своем составе имеют железо и углерод. Для придания особых свойств в сталь вводят другие элементы. Такие стали называются легированными.

Углеродистые стали общего назначения поставляются:

группа А – с гарантируемыми механическими свойствами (сталь не подвергается термообработке);

группа Б — с гарантируемым химическим составом (сталь подвергается термообработке);

группа В — с гарантируемыми механическими свойствами и химическим составом.

Кипящие стали (кп) раскисляются Mn, полуспокойные (пс) – Mn, Si, спокойные (сп) – Mn, Si, Al.

Пример обозначения стали группы А – Ст.3кп, группы В –В Ст.3сп.

Качественные углеродистые стали отличаются пониженным содержанием вредных примесей – фосфора и серы. В обозначении сталей цифры означают содержание углерода в сотых долях процента, например – Сталь 10 содержит 0,10 % углерода.

Малоуглеродистые стали содержат углерода менее 0,25 %, среднеуглеродистые – 0,25…0,46 %, высокоуглеродистые – более 0,46 %.

Легирование позволяет повысить прочностные свойства, обеспечивает коррозионную стойкость, жаропрочность и т.п. В зависимости от содержания легирующих элементов стали разделяются на низколегированные (до 2,5 %), среднелегированные (2,5…10 %) и высоколегированные ( более 10 %).

Легирующие добавки имеют следующие условные обозначения: марганец — Г, кремний — С, никель — Н, хром — Х, молибден — М, ванадий — Ф и т.д.

Первые две цифры в обозначении стали указывают на содержание углерода в сотых долях процента, а цифра справа от условного обозначения элемента – среднее содержание элемента в процентах. Пример обозначения легированной стали: 12Х18Н9Т – 0,12% углерода, 18% хрома, 9% никеля, 1% титана.

Примечание. Буква А в середине обозначения стали – содержание азота, в конце – пониженное содержание вредных примесей.

Диаграмма состояния «Железо — Углерод»

Представляет собой графическое изображение состояния сплава. Координатором является температура концентрации. Диаграмма состояния строится для равновесных условий, она позволяет определить фазовое состояние для заданных условий. Фазой называется однородная часть системы, отделенная от других частей системы границей раздела при переходе через которую свойства меняются скачкообразно.

Железо в твердом состоянии может иметь две кристаллические модификации:

• До 911 °C — ОЦК (альфа — железо)

• Св. 911 °C железо претерпевает полиморфное превращение, приобретая решетку ГЦК (гамма — железо), и сохраняет это состояние до 1392 °C.

• При температуре 1392 °C происходит полиморфное превращение с образованием ОЦК (дельта — железо)

• При нагреве до температуры 1539 °C — образуется жидкая фаза.

Растворимость углерода в железе зависит от типа кристаллической решетки и температуры. В альфа — железе при 20 °C растворяется 0,01 % углерода, при 727 °C -0,02 %. В гамма — железе при температуре 1147 °C растворяется до 2,14% углерода.

Стали подразделяют на доэвтектоидные и заэвтектоидные. В зависимости от содержания углерода стали подразделяют на: низкоуглеродистые (с содержанием углерода до 0,25 % включительно); среднеуглеродистые (от 0,25 % до 0,45 % углерода); высокоуглеродистые (более 0,45 %). В группе высокоуглеродистых сталей выделяют инструментальные стали (С=0,7 — 1,3 %) У7, У8, У13.

С увеличением концентрации С, возрастает прочность и твердость стали, со снижением пластичности.

В т. А2 при температуре 768 исчезают магнитные свойства железа.

Явление полиморфизма применительно к железу. Строение и основные характеристики кристаллической решетки для различных модификаций железа

Общим свойством металлов и сплавов является их кристаллическое строение, характеризующееся определенным закономерным расположением атомов в пространстве. Для описания атомно-кристаллической структуры используют понятие кристаллической решетки, являющейся воображаемой пространственной сеткой с ионами (атомами) в узлах. Атомно-кристаллическая структура может быть представлена изображением не ряда периодически повторяющихся объемов, а одной элементарной ячейкой. Элементарной ячейкой называется ячейка, повторяющаяся во всех трех измерениях. Трансляцией этого наименьшего объема можно полностью воспроизвести структуру кристалла. Наиболее часто металлы имеют кристаллические решетки следующих типов:

  • — объёмно центрированный куб или сокращенно ОЦК;
  • — гранецентрированный куб (ГЦК);
  • — гексагональная плотноупакованная (ГП).

Типы элементарных ячеек кристаллических решеток металлов и схемы упаковки атомов приведены на рисунке 1.

Рисунок 1. — Типы элементарных ячеек кристаллических решеток и схемы упаковки в них атомов:

а — объемно центрированная кубическая;

б — гранецентрированная кубическая;

в — гексагональная плотноупакованная решетка.

В точках пересечения прямых линий располагаются атомы; они называются узлами решетки. Расстояния а и между центрами атомов, находящихся в соседних узлах решетки, называют параметрами или периодами решетки. Величина их в металлах порядка 0,3-0,7 нм, размеры элементарных ячеек 0,2-0,3 нм.

Если принять, что атомы в решетке представляют собой упругие соприкасающиеся шары, то нетрудно видеть, что в решетке, помимо атомов, имеется значительное свободное пространство. Плотность кристаллической решетки, т. е., объем, занятый атомами, характеризуется коэффициентом компактности.

Координационным числом называется число атомов, находящихся на наиболее близком равном расстоянии от данного атома. Для ОЦК решетки координационное число равно 8, для решеток ГЦК и ГП оно составляет 12. Из этого следует, что решетка ОЦК менее компактна, чем решетки ГЦК и ГП. В решетке ОЦК каждый атом имеет всего 8 ближайших соседей, а в решетках ГЦК и ГП — 12.

Коэффициент компактности Q равен отношению суммарного объема атомов, входящих в решетку, к объему решетки:

R — радиус атома (иона);

n-базис или число атомов, приходящихся на одну элементарную ячейку;

V — объем элементарной ячейки.

Для простой кубической решетки:

V = а 3 = (2R) 3 Q = 52%

Учитывая, что атомы соприкасаются по диагонали куба, длина которой равна 4 атомным радиусам, параметр решетки равен:

Проведя аналогичные вычисления, найдем Qгцк = 74%, QГП = 74%.

Таким образом, решетки ГЦК и ГП более компактны, чем ОЦК.

Некоторые металлы при разных температурах могут иметь различную кристаллическую решетку. Способность металла существовать в различных кристаллических формах носит название полиморфизма или аллотропии. Принято обозначать полиморфную модификацию, устойчивую при более низкой температуре, индексом б (Fe б), при более высокой в, затем г и т. д.

Известны полиморфные превращения железа:

Tiб — Tiг и других элементов.

Температура превращения одной кристаллической модификации в другую называется температурой полиморфного превращения.

При полиморфном превращении меняются форма и тип кристаллической решетки. Это явление называется перекристаллизацией. Так, при температуре ниже 911°С устойчиво Fe б, имеющее кристаллическую решетку ОЦК. Выше 911°С до 1392°С устойчиво Feг, имеющее решетку ГЦК. При нагреве выше 911°С атомы решетки ОЦК перестраиваются, образуя решетку ГЦК. На явлении полиморфизма основана термическая обработка.

При переходе из одной полиморфной формы в другую меняются свойства, в частности плотность и соответственно объем вещества. Например, плотность Feг на 3% больше плотности Feб, а удельный объем соответственно меньше. Эти изменения объема необходимо учитывать при термообработке.

Типы кристаллических решеток важнейших металлических элементов приведены в табл. 1 и 2.

Таблица 1. — Типы кристаллических решеток важнейших металлических элементов (А. Металлы с одним типом решетки):

Структура, свойства и применение железоуглеродистых

К железоуглеродистым сплавам относят стали (содержание углерода — до 2,14%) и чугуны (содержание углерода — свыше 2,14%), которые по масштабу и многообразию своего применения имеют важное значение для современной техники.

Чтоб разобраться в сложных и разнообразных структурных превращениях в сплавах на основе железа и сознательно воздействовать на них путем термообработки для получения требуемых свойств, необходимо рассмотреть превращения в железоуглеродистых сплавах в условиях фазового равновесия, т.е. ознакомиться с диаграммой состояния «железо-углерод».

Компоненты и фазы в системе «железоуглерод»

Железо – металл серебристо-серого цвета, очень пластичный, с удельным весом 7,8 г/см 3 , температурой плавления 1539°С. Оно имеет несколько аллотропических превращений (аллотропия, или полиморфизм, – способность некоторых веществ при одном и том же химическом составе изменять тип кристаллической решетки, а следовательно, иметь различные свойства), которые наглядно показаны на кривой охлаждения чистого железа (рис. 6.1).

В процессе кристаллизации из жидкой фазы при температуре 1539°С образуются кристаллы d-железа с объемно центрированной кубической кристаллической решеткой (ОЦК), которое обозначается Fed. При дальнейшем охлаждении d-железо сохраняется до температуры 1392°С, при которой происходит полиморфное превращение d-железа в g-железо с гранецентрированной кубической кристаллической решеткой (ГЦК), которое обозначается Feg; g-железо устойчиво до температуры 911°С. При температуре 911°С опять происходит полиморфное превращение g-железа в b-железо с ОЦК кристаллической решеткой (обозначается Feb).

Рис. 6.1. Кривая охлаждения чистого железа

При температуре 768°С (точка Кюри) наблюдается магнитное превращение, в результате которого образуется ферромагнитное a-железо с ОЦК кристаллической решеткой, которое обозначается Fea.

Читайте также  Углеродистая сталь или нержавейка что лучше?

Модификации железа a, b и d обладают одной и той же ОЦК кристаллической решеткой. Следовательно, самостоятельными кристаллическими модификациями железа являются только a- и g-железо.

Обозначение критических точек железа. Температуры полиморфных превращений железа принято называть критическими точками и обозначать их буквой А с соответствующими индексами 2, 3, 4, указывающими на характер превращения. Чтобы отличить превращения, протекающие в железоуглеродистых сплавах при нагревании, от превращений при охлаждении принято к обозначению критических точек добавлять: при нагревании — индекс с, при охлаждении — индекс r. Например, точка А3 обозначает температуру аллотропического превращения Fea«Feg.

Углерод – неметаллический элемент с удельным весом 2,265 г/см 3 , температурой плавления 3500°С. Углерод имеет две аллотропические модификации: графита и алмаза. В форме графита в сплавах углерод встречается только в серых чугунах.

В железоуглеродистых сплавах присутствуют следующие твердые

Аустенит (А) – твердый раствор внедрения углерода в g-железе.

Аустенит имеет кубическую гранецентрированную кристаллическую решетку. Растворимость углерода в Feg зависит от температуры: чем выше температура, тем больше растворимость. Максимальная растворимость углерода в Feg равна 2,14% при температуре 1147°С, при температуре 727°С растворимость равна 0,8%. Аустенит обладает высокой пластичностью, низкими пределами текучести и прочности. Твердость НВ составляет 170…220.

Феррит (Ф) – твердый раствор внедрения углерода в a-железе. Феррит имеет кубическую объемно центрированную кристаллическую решетку. Растворимость углерода в Fea также зависит от температуры. Максимальная растворимость углерода в Fea равна 0,02% при температуре 727°С, максимальная растворимость при комнатной температуре – 0,006%. Феррит (при 0,006% С) имеет следующие механические свойства sв = 250 МПа,

s0,2 = 120 МПа, d = 50% , y = 80%, НВ 80…90.

Цементит (Ц) – химическое соединение железа с углеродом Fe3C, содержащее 6,67% углерода. Он обладает сложной кристаллической решеткой, тепло- и электропроводностью, слабыми магнитными свойствами, высокой твердостью НВ 800, отличается хрупкостью. До температуры 210°С цементит ферромагнитен. Температура плавления цементита – 1260°С.

Различают: первичный цементит ЦI, который выделяется из жидкой фазы во всех железоуглеродистых сплавах, содержащих углерода более

2,14 %; вторичный цементит ЦII, который выделяется из аустенита в железоуглеродистых сплавах, содержащих более 0,8% углерода, в интервале температур от 1147 до 727°С; третичный цементит ЦIII – выделяется из феррита в железоуглеродистых сплавах, содержащих более 0,006% углерода, в интервале температур от 727 до 0°С. Если в железоуглеродистом сплаве находятся одновременно несколько разновидностей цементита, то все они являются одной фазой, т.е. химическим соединением, так как имеют один и тот же состав, строение и свойства.

Графит. Кристаллическая решетка графита — гексагональная слоистая. Он мягкий, обладает низкой прочностью и электропроводностью.

В железоуглеродистых сплавах могут присутствовать следующие двухфазные структуры:

Перлит (П) – эвтектоидная механическая смесь, состоящая из двух фаз: феррита и цементита. Перлит образуется из аустенита определенного состава (0,8% С) при температуре 727°С. Содержание углерода в перлите для всех железоуглеродистых сплавов всегда постоянно и составляет 0,8%. В равновесии перлит имеет пластинчатое строение (см. микроструктуру). В результате термообработки можно получить перлит зернистый, но такая структура будет неравновесной. Механические свойства перлита зависят от степени измельченности частичек цементита и формы цементита. Сталь со структурой пластинчатого перлита имеет такие свойства: sв = 820 МПа,

d = 15%, НВ 220; сталь с зернистым перлитом — sв = 630 МПа, d = 20%,

Ледебурит (Л) – эвтектическая смесь, образующаяся при постоянной температуре 1147°С из жидкой фазы определенного состава (4,3% С). При температуре 1147°С и до 727°С ледебурит состоит из двух фаз – аустенита и цементита; ниже 727°С ледебурит состоит из двух структур – перлита и цементита, т.е. также из двух фаз, но только уже из феррита и цементита. Содержание углерода в ледебурите всегда постоянно и равно 4,3%.

Диаграмма состояния «железоцементит»

На диаграмме состояния «железо–цементит» приведены фазовый состав и структура сплавов с концентрацией углерода от 0 до 6,67% (рис. 6.2).

Область перитектического превращения в районе температуры плавления чистого железа условно не показана.

Линия АСD – линия ликвидус, линия начала кристаллизации сплавов. Выше этой линии все сплавы находятся в жидком состоянии.

Линия АECF – линия солидус, линия конца кристаллизации сплавов. Ниже этой линии все сплавы находятся в твердом состоянии.

Линии АС и DС показывают температуры начала кристаллизации аустенита (АС) и первичного цементита (DС). При выделении из жидкой фазы кристаллов аустенита состав жидкой фазы будет обогащаться углеродом и по мере снижения температуры изменяться по линии АС. Состав твердой фазы (аустенита) при этом будет обогащаться углеродом и изменяться по линии АE. При выделении из жидкой фазы кристаллов первичного цементита состав ее будет обедняться углеродом и с понижением температуры изменяться по линии DС. Состав твердой фазы (цементита) остается постоянным. Количество углерода в цементите – 6,67%.

При достижении температуры 1147°С состав жидкой фазы для любого сплава, расположенного между концентрациями от точки Е (2,14% С) до точки F (6,67% С), будет соответствовать точке С (4,3% С). При этой температуре оставшаяся часть жидкой фазы данного состава кристаллизуется при постоянной температуре с образованием эвтектической механической смеси, содержащей то же количество углерода, что и жидкость, т.е. 4,3%. Эта эвтектика называется ледебуритом. Она состоит из аустенита состава точки Е (2,14% С) и цементита состава точки F (6,67% С) Ж.ФС « ЛСЕ + Fe3C). Линия ЕСF обозначает постоянную температуру образования эвтектики ледебурита и температуру конца кристаллизации сплавов, содержащих углерода более 2,14%. Эта линия называется линией эвтектического превращения. Структура сплава, содержащего 4,3% углерода, будет состоять только из ледебурита. В сплавах, расположенных левее точки С, в избытке будет находиться аустенит и структура их после затвердевания будет состоять из первичных кристаллов аустенита и ледебурита; для сплавов, расположенных правее точки С в избытке будет находиться цементит, поэтому структура этих сплавов после затвердевания состоит из первичных кристаллов цементита и ледебурита.

Сплавы, расположенные левее точки Е, после окончания процесса кристаллизации (область АESG) имеют структуру аустенита.

При дальнейшем охлаждении затвердевших железоуглеродистых сплавов ниже линии АECF (линия солидус) происходят процессы, связанные с изменением растворимости углерода в железе a и g, а также процессы, которые обуславливаются полиморфным превращением железа.

Линия GS показывает температуру начала превращения аустенита в феррит. В сплавах, находящихся левее точки S, при понижении температуры ниже линии GS из аустенита будут выделяться кристаллы феррита.

Линия ЕS представляет собой линию изменения предельной растворимости углерода в аустените в зависимости от температуры. При охлаждении ниже этой линии происходит выделение из аустенита вторичного цементита, а при нагреве на этой линии заканчивается распад вторичного цементита и растворение углерода в аустените.Состав аустенита при понижении температуры будет все время изменяться: в сплавах, находящихся левее точки S, — обогащаться углеродом и изменяться по линии GS; в сплавах, находящихся правее точки S, — обедняться углеродом и изменяться по линии ES.

Ниже линии SECF во всех сплавах при охлаждении из аустенита будет выделяться вторичный цементит по закону линии ES.

При достижении в процессе охлаждения сплавов температуры 727°С состав аустенита для всех сплавов будет соответствовать точке S (0,8% С). При этой температуре аустенит будет превращаться в эвтектоидную механическую смесь, состоящую из феррита и цементита, которая называется перлитом: АS « ПSP + Fe3C).

Следовательно, линия PSK показывает постоянную температуру образования перлита (эвтектоида) при охлаждении. Линия PSK называется линией эвтектоидного, или перлитного, превращения.

Образование перлита протекает при строго определенной постоянной температуре (727°С). Структура сплава, содержащего 0,8% углерода, ниже 727°С будет состоять из перлита. В сплавах, расположенных левее точки S, в избытке будет находиться феррит. Структура таких сплавов состоит из феррита и перлита. Количество феррита увеличивается с уменьшением содержания углерода в сплаве. В сплавах, расположенных правее точки S, в избытке будет находиться цементит. С увеличением содержания углерода количество цементита будет расти. Структура этих сплавов будет состоять из перлита и вторичного цементита (от 0,8 до 2,14% С), при этом вторичный цементит выделяется по границам зерен в виде цементитной сетки; перлита, вторичного цементита и ледебурита (от 2,14 до 4,3% С); ледебурита

(4,3% С); первичного цементита и ледебурита (от 4,3 до 6,67% С).

Линия GP показывает температуру конца превращения аустенита в феррит. При охлаждении железоуглеродистых сплавов ниже линии PSK из феррита при понижении температуры будет выделяться третичный цементит. Это связано с уменьшением растворимости углерода в a-железе.

Рис. 6.2. Диаграмма состояния «железо-цементит»

Линия PQ показывает температуру начала выделения третичного цементита из феррита. Третичный цементит может присутствовать во всех сплавах, содержащих более 0,006% С, однако как отдельная фаза он находится только в сплавах, содержащих от 0,006 до 0,02% С.

На рис. 6.3 показана диаграмма состояния системы «железо-цементит» и приведен ряд сплавов с различной концентрацией углерода. Описание процессов, протекающих в сплавах при их охлаждении из жидкого состояния, приведено в табл. 6.1.

Рис. 6.3. Диаграмма состояния системы «железо-цементит»

Структура, свойства и применение железоуглеродистых

К железоуглеродистым сплавам относят стали (содержание углерода — до 2,14%) и чугуны (содержание углерода — свыше 2,14%), которые по масштабу и многообразию своего применения имеют важное значение для современной техники.

Чтоб разобраться в сложных и разнообразных структурных превращениях в сплавах на основе железа и сознательно воздействовать на них путем термообработки для получения требуемых свойств, необходимо рассмотреть превращения в железоуглеродистых сплавах в условиях фазового равновесия, т.е. ознакомиться с диаграммой состояния «железо-углерод».

Компоненты и фазы в системе «железоуглерод»

Железо – металл серебристо-серого цвета, очень пластичный, с удельным весом 7,8 г/см 3 , температурой плавления 1539°С. Оно имеет несколько аллотропических превращений (аллотропия, или полиморфизм, – способность некоторых веществ при одном и том же химическом составе изменять тип кристаллической решетки, а следовательно, иметь различные свойства), которые наглядно показаны на кривой охлаждения чистого железа (рис. 6.1).

Читайте также  Что можно сделать на циркулярном станке?

В процессе кристаллизации из жидкой фазы при температуре 1539°С образуются кристаллы d-железа с объемно центрированной кубической кристаллической решеткой (ОЦК), которое обозначается Fed. При дальнейшем охлаждении d-железо сохраняется до температуры 1392°С, при которой происходит полиморфное превращение d-железа в g-железо с гранецентрированной кубической кристаллической решеткой (ГЦК), которое обозначается Feg; g-железо устойчиво до температуры 911°С. При температуре 911°С опять происходит полиморфное превращение g-железа в b-железо с ОЦК кристаллической решеткой (обозначается Feb).

Рис. 6.1. Кривая охлаждения чистого железа

При температуре 768°С (точка Кюри) наблюдается магнитное превращение, в результате которого образуется ферромагнитное a-железо с ОЦК кристаллической решеткой, которое обозначается Fea.

Модификации железа a, b и d обладают одной и той же ОЦК кристаллической решеткой. Следовательно, самостоятельными кристаллическими модификациями железа являются только a- и g-железо.

Обозначение критических точек железа. Температуры полиморфных превращений железа принято называть критическими точками и обозначать их буквой А с соответствующими индексами 2, 3, 4, указывающими на характер превращения. Чтобы отличить превращения, протекающие в железоуглеродистых сплавах при нагревании, от превращений при охлаждении принято к обозначению критических точек добавлять: при нагревании — индекс с, при охлаждении — индекс r. Например, точка А3 обозначает температуру аллотропического превращения Fea«Feg.

Углерод – неметаллический элемент с удельным весом 2,265 г/см 3 , температурой плавления 3500°С. Углерод имеет две аллотропические модификации: графита и алмаза. В форме графита в сплавах углерод встречается только в серых чугунах.

В железоуглеродистых сплавах присутствуют следующие твердые

Аустенит (А) – твердый раствор внедрения углерода в g-железе.

Аустенит имеет кубическую гранецентрированную кристаллическую решетку. Растворимость углерода в Feg зависит от температуры: чем выше температура, тем больше растворимость. Максимальная растворимость углерода в Feg равна 2,14% при температуре 1147°С, при температуре 727°С растворимость равна 0,8%. Аустенит обладает высокой пластичностью, низкими пределами текучести и прочности. Твердость НВ составляет 170…220.

Феррит (Ф) – твердый раствор внедрения углерода в a-железе. Феррит имеет кубическую объемно центрированную кристаллическую решетку. Растворимость углерода в Fea также зависит от температуры. Максимальная растворимость углерода в Fea равна 0,02% при температуре 727°С, максимальная растворимость при комнатной температуре – 0,006%. Феррит (при 0,006% С) имеет следующие механические свойства sв = 250 МПа,

s0,2 = 120 МПа, d = 50% , y = 80%, НВ 80…90.

Цементит (Ц) – химическое соединение железа с углеродом Fe3C, содержащее 6,67% углерода. Он обладает сложной кристаллической решеткой, тепло- и электропроводностью, слабыми магнитными свойствами, высокой твердостью НВ 800, отличается хрупкостью. До температуры 210°С цементит ферромагнитен. Температура плавления цементита – 1260°С.

Различают: первичный цементит ЦI, который выделяется из жидкой фазы во всех железоуглеродистых сплавах, содержащих углерода более

2,14 %; вторичный цементит ЦII, который выделяется из аустенита в железоуглеродистых сплавах, содержащих более 0,8% углерода, в интервале температур от 1147 до 727°С; третичный цементит ЦIII – выделяется из феррита в железоуглеродистых сплавах, содержащих более 0,006% углерода, в интервале температур от 727 до 0°С. Если в железоуглеродистом сплаве находятся одновременно несколько разновидностей цементита, то все они являются одной фазой, т.е. химическим соединением, так как имеют один и тот же состав, строение и свойства.

Графит. Кристаллическая решетка графита — гексагональная слоистая. Он мягкий, обладает низкой прочностью и электропроводностью.

В железоуглеродистых сплавах могут присутствовать следующие двухфазные структуры:

Перлит (П) – эвтектоидная механическая смесь, состоящая из двух фаз: феррита и цементита. Перлит образуется из аустенита определенного состава (0,8% С) при температуре 727°С. Содержание углерода в перлите для всех железоуглеродистых сплавов всегда постоянно и составляет 0,8%. В равновесии перлит имеет пластинчатое строение (см. микроструктуру). В результате термообработки можно получить перлит зернистый, но такая структура будет неравновесной. Механические свойства перлита зависят от степени измельченности частичек цементита и формы цементита. Сталь со структурой пластинчатого перлита имеет такие свойства: sв = 820 МПа,

d = 15%, НВ 220; сталь с зернистым перлитом — sв = 630 МПа, d = 20%,

Ледебурит (Л) – эвтектическая смесь, образующаяся при постоянной температуре 1147°С из жидкой фазы определенного состава (4,3% С). При температуре 1147°С и до 727°С ледебурит состоит из двух фаз – аустенита и цементита; ниже 727°С ледебурит состоит из двух структур – перлита и цементита, т.е. также из двух фаз, но только уже из феррита и цементита. Содержание углерода в ледебурите всегда постоянно и равно 4,3%.

Диаграмма состояния «железоцементит»

На диаграмме состояния «железо–цементит» приведены фазовый состав и структура сплавов с концентрацией углерода от 0 до 6,67% (рис. 6.2).

Область перитектического превращения в районе температуры плавления чистого железа условно не показана.

Линия АСD – линия ликвидус, линия начала кристаллизации сплавов. Выше этой линии все сплавы находятся в жидком состоянии.

Линия АECF – линия солидус, линия конца кристаллизации сплавов. Ниже этой линии все сплавы находятся в твердом состоянии.

Линии АС и DС показывают температуры начала кристаллизации аустенита (АС) и первичного цементита (DС). При выделении из жидкой фазы кристаллов аустенита состав жидкой фазы будет обогащаться углеродом и по мере снижения температуры изменяться по линии АС. Состав твердой фазы (аустенита) при этом будет обогащаться углеродом и изменяться по линии АE. При выделении из жидкой фазы кристаллов первичного цементита состав ее будет обедняться углеродом и с понижением температуры изменяться по линии DС. Состав твердой фазы (цементита) остается постоянным. Количество углерода в цементите – 6,67%.

При достижении температуры 1147°С состав жидкой фазы для любого сплава, расположенного между концентрациями от точки Е (2,14% С) до точки F (6,67% С), будет соответствовать точке С (4,3% С). При этой температуре оставшаяся часть жидкой фазы данного состава кристаллизуется при постоянной температуре с образованием эвтектической механической смеси, содержащей то же количество углерода, что и жидкость, т.е. 4,3%. Эта эвтектика называется ледебуритом. Она состоит из аустенита состава точки Е (2,14% С) и цементита состава точки F (6,67% С) Ж.ФС « ЛСЕ + Fe3C). Линия ЕСF обозначает постоянную температуру образования эвтектики ледебурита и температуру конца кристаллизации сплавов, содержащих углерода более 2,14%. Эта линия называется линией эвтектического превращения. Структура сплава, содержащего 4,3% углерода, будет состоять только из ледебурита. В сплавах, расположенных левее точки С, в избытке будет находиться аустенит и структура их после затвердевания будет состоять из первичных кристаллов аустенита и ледебурита; для сплавов, расположенных правее точки С в избытке будет находиться цементит, поэтому структура этих сплавов после затвердевания состоит из первичных кристаллов цементита и ледебурита.

Сплавы, расположенные левее точки Е, после окончания процесса кристаллизации (область АESG) имеют структуру аустенита.

При дальнейшем охлаждении затвердевших железоуглеродистых сплавов ниже линии АECF (линия солидус) происходят процессы, связанные с изменением растворимости углерода в железе a и g, а также процессы, которые обуславливаются полиморфным превращением железа.

Линия GS показывает температуру начала превращения аустенита в феррит. В сплавах, находящихся левее точки S, при понижении температуры ниже линии GS из аустенита будут выделяться кристаллы феррита.

Линия ЕS представляет собой линию изменения предельной растворимости углерода в аустените в зависимости от температуры. При охлаждении ниже этой линии происходит выделение из аустенита вторичного цементита, а при нагреве на этой линии заканчивается распад вторичного цементита и растворение углерода в аустените.Состав аустенита при понижении температуры будет все время изменяться: в сплавах, находящихся левее точки S, — обогащаться углеродом и изменяться по линии GS; в сплавах, находящихся правее точки S, — обедняться углеродом и изменяться по линии ES.

Ниже линии SECF во всех сплавах при охлаждении из аустенита будет выделяться вторичный цементит по закону линии ES.

При достижении в процессе охлаждения сплавов температуры 727°С состав аустенита для всех сплавов будет соответствовать точке S (0,8% С). При этой температуре аустенит будет превращаться в эвтектоидную механическую смесь, состоящую из феррита и цементита, которая называется перлитом: АS « ПSP + Fe3C).

Следовательно, линия PSK показывает постоянную температуру образования перлита (эвтектоида) при охлаждении. Линия PSK называется линией эвтектоидного, или перлитного, превращения.

Образование перлита протекает при строго определенной постоянной температуре (727°С). Структура сплава, содержащего 0,8% углерода, ниже 727°С будет состоять из перлита. В сплавах, расположенных левее точки S, в избытке будет находиться феррит. Структура таких сплавов состоит из феррита и перлита. Количество феррита увеличивается с уменьшением содержания углерода в сплаве. В сплавах, расположенных правее точки S, в избытке будет находиться цементит. С увеличением содержания углерода количество цементита будет расти. Структура этих сплавов будет состоять из перлита и вторичного цементита (от 0,8 до 2,14% С), при этом вторичный цементит выделяется по границам зерен в виде цементитной сетки; перлита, вторичного цементита и ледебурита (от 2,14 до 4,3% С); ледебурита

(4,3% С); первичного цементита и ледебурита (от 4,3 до 6,67% С).

Линия GP показывает температуру конца превращения аустенита в феррит. При охлаждении железоуглеродистых сплавов ниже линии PSK из феррита при понижении температуры будет выделяться третичный цементит. Это связано с уменьшением растворимости углерода в a-железе.

Рис. 6.2. Диаграмма состояния «железо-цементит»

Линия PQ показывает температуру начала выделения третичного цементита из феррита. Третичный цементит может присутствовать во всех сплавах, содержащих более 0,006% С, однако как отдельная фаза он находится только в сплавах, содержащих от 0,006 до 0,02% С.

На рис. 6.3 показана диаграмма состояния системы «железо-цементит» и приведен ряд сплавов с различной концентрацией углерода. Описание процессов, протекающих в сплавах при их охлаждении из жидкого состояния, приведено в табл. 6.1.

Рис. 6.3. Диаграмма состояния системы «железо-цементит»