Какая нужна емкость конденсатора для трехфазного электродвигателя?

Как подобрать и подключить конденсатор для трехфазного двигателя

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование. Иногда возникает необходимость в использовании нестандартных устройств, например как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

  1. Принцип подключения трехфазного устройства к одной фазе
  2. Схемы подключения трехфазного двигателя к однофазной сети
  3. Виды пусковых конденсаторов
  4. Выбор конденсатора для трехфазного двигателя
  5. Расчет емкости
  6. Как подключить пусковой и рабочий конденсаторы

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени.

Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Как правильно подобрать и рассчитать емкость конденсатора на трехфазный двигатель

Подключение силового оборудования в однофазную сеть (220В) чаще всего производят емкостным методом. При этом нужно знать, как подобрать конденсаторы на трехфазный двигатель, от которого осуществляется привод. Из них собирается пусковая цепь, создающая необходимый момент и перекос фаз. В этой статье мы постараемся вкратце рассмотреть вопросы расчета и подбора емкости, а также возможные схемы подключения асинхронного электромотора.

Что такое трехфазный двигатель?

Большинство силовых агрегатов, преобразующих электрическую энергию с тепловую, представляют собой асинхронные машины. Если разобрать любой такой двигатель, то станет понятно, что он имеет два ключевых компонента, на взаимодействии которых строится вся его работа.

Статор

Это неподвижная часть мотора, имеющая кольцевидную форму – полый цилиндр. Сразу следует уточнить, что он не является цельным, грубо говоря изготовленным через точение круглой стальной болванки. Статор набирается из кольцевых пластин (магнитопровода), что позволяет избежать образования так называемых поверхностных токов Фуко, которые могут сильно разогревать металл. На внутреннем диаметре имеются продольные пазы, в которые укладывается обмотка из проволоки. Большинство стандартных двигателей являются трехфазными, то есть имеют три обмотки статора (по одной на каждую фазу). Геометрически каждая обмотка/фаза является смещенной относительно других на 120°. Такой расчет позволяет при подаче на фазные клеммы напряжения 380В возбудить в обмотках вращающееся магнитное поле.

Ротор

Это подвижная (вращающаяся) часть, конструктивно объединенная с приводным валом. Он также имеет наборный пластинчатый сердечник (магнитопровод), но в отличии от статора, пазы для обмоток располагаются на внешнем диаметре. Более того, называть их обмотками можно только с функциональной точки зрения, поскольку реально они представляют собой медные прутки определенного диаметра, а не пучки (катушки) проволоки.

С обоих сторон прутки соединяются на кольцевые ограничивающие пластины, образуя некоторое подобие беличьей клетки. Такая компоновка наиболее распространена и называется «коротко замкнутый ротор». При подаче напряжения здесь также магнитное поле, но оно имеет несколько меньшую частоту вращения (асинхронную), нежели у статора. Эта разница называется скольжением и составляет порядка 2…10%. Благодаря ей, между полями наводится ЭДС (электродвижущая сила), которая и заставляет вал вращаться с рабочей частотой.

Читайте также  Карбид кальция для чего используется?

Как подключить 3ех фазный двигатель в однофазную сеть?

Запуск двигателя с тремя рабочими обмотками возможет потому, что он по умолчанию имеет сдвинутые на 120° фазы. Если подать напряжение всего на одну фазу, то не произойдет ровным счетом ничего по аналогии с однофазным двигателем на 220В, где в таком случае возникают эквивалентные разнонаправленные магнитные поля. Формально для этого нужно включить в работу хотя бы еще одну фазу, чтобы создать сдвиг и набрать необходимый момент. Подключение в сеть с напряжением 220В чаще всего производят через дополнительный контур – цепь из рабочих и пусковых конденсаторов.

Общая пусковая схема при подключении звездой (слева) и треугольником (справа) будет иметь следующий вид:

Как можно видеть, и в первом, и во втором случае две из трех обмоток подключаются напрямую к однофазной сети на 220В. Третья фаза закольцовывается на одну из двух предыдущих посредством промежуточной цепи конденсаторов: Сраб – основной/рабочий и Сп–для запуска. Второй подключен параллельно через ключ SA. Последний имеет нормально разомкнутые контакты, а крайнее положение кнопки не фиксируется – для того, чтобы через пусковой конденсатор пошел ток, ее нужно удерживать нажатой.

Почему используются параллельные емкости?

Любой человек, в свое время не зевавший на уроках физики, должен помнить, что максимальное потребление энергии 3ех фазным двигателем наблюдается именно в момент его запуска, когда происходит рост частоты вращения от 0 до номинала. Чем больше мощность, тем это пиковое потребление электричества выше. Из чего следует логический вывод – емкости, которая будет поддерживать работу на 220В скорее всего не хватит для старта. Поэтому, для вывода мотора на режим ее по расчету нужно увеличить примерно вдвое относительно рабочей.

После запуска, когда будут достигнуты оптимальные обороты (не менее 70% от номинальных), пусковые конденсаторы отключают, отпуская кнопку SA. Сделать это нужно обязательно, иначе большая суммарная емкость вызовет серьезный перекос фаз и перегрев обмоток.

Если же мощность мотора невелика или он не работает под серьезной нагрузкой, то скорее всего можно будет обойтись пуском через рабочий контур.

Как рассчитать емкость и подобрать конденсатор

Очевидно то, что вопрос выбора емкостей для запуска и работы трехфазного двигателя в однофазной сети, зависит от его мощности, номинального (фазного) тока и напряжения. Расчет обычно ведется через следующие формулы:

В данном уравнении присутствуют две величины:

  • U – напряжение в однофазной сети (220В),
  • IН– номинальный или фазный ток, А.

Обе схемы подключений дают разные значения линейных и фазных характеристик, что видно на следующих иллюстрациях:

Вычислить необходимый ток между обмотками можно с помощью клещей либо используя формулы. Если же и тот, и другой вариант видятся сложными, то можно провести расчет и подобрать конденсатор через эмпирическую зависимость: 7 мкФ на 100 Вт мощности.

Что касается пусковых конденсаторов, то их подбор ведется с расчетом, что емкость должна быть выше, нежели у рабочих, чтобы покрыть пиковое потребление при запуске. Разные источники указывают на разные значения пропорционального коэффициента: от 1,5 до 3. На практике же чаще всего используют рекомендацию по двукратному увеличению.

Далее можно подобрать конденсаторы и приступить к компоновке. Для организации запуска двигателя используются бумажные (МБГП, КБП, МБГО), электролитические или металлизированные полипропиленовые (СВВ) модели. Первые, как правило, массовые и дешевые, но имеют сравнительно большие габариты при малой емкости, что вынуждает набирать целые батареи. Электролитические модели требуют использования в схеме управления диодных элементов и сопротивления, повреждение или выход из строя которых приведет к разрушению конденсатора. СВВ модели более современные, а посему в них нет практически тех недостатков, которые присутствуют в аналогах. По форме емкостные блоки могут выпускаться либо квадратными, либо круглыми (бочонками).

Также следует подобрать рабочее напряжение конденсатора, которое по расчету должно быть примерно в 1,15 раза выше чем в однофазной сети на 220В. Меньшие значения негативно сказываются на долговечности блоков, а большие – на габаритах сборки.

Конденсатор для пуска электродвигателя, как рассчитать мощность — во всех подробностях

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование.

Иногда возникает необходимость в использовании нестандартных устройств, поэтому приходится решать задачу, как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Устройство и предназначение конденсаторов

Этот элемент электрической схемы состоит из двух пластин (обкладок). Обкладки расположены по отношению друг к другу так, что между ними оставлен зазор. При включении конденсатора в цепь электрического тока на обкладках накапливаются заряды. Из-за физического зазора между пластинами устройство обладает маленькой проводимостью.

Внимание! Этот зазор бывает воздушным или заполнен диэлектриком. В качестве диэлектрика применяются: бумага, электролит, оксидные плёнки.

Главная особенность такого двухполюсника – способность накапливать энергию электрического поля и мгновенно отдавать её на нагрузку (заряд и разряд).

Первым прототипом ёмкости стала Лейденская банка, созданная в 1745 году в городе Лейдене немцем фон Клейстом. Банку изнутри и снаружи выстилали медной фольгой. Так появилась идея создания обкладок.

Лейденские банки, соединённые параллельно

Графическое обозначение двухполюсника на схемах и чертежах – две вертикально расположенные черты (как обкладки) с зазором между ними.

Обозначение на схемах

Пояснения к расчету

Схема соединения обычно отмечена на самом конденсаторе, и может обозначаться либо звёздой, либо треугольником. Как правило, это две разные формы, ёмкость которых рассчитывается, по- разному:

Ср — емкость рабочего конденсатора

Ср — емкость рабочего конденсатора

Ср — емкость рабочего конденсатора, мкФ
Сп — емкость пускового конденсатора, мкФ
I — ток, А
U — напряжение в сети, В
η — КПД двигателя в %, деленных на 100
cosϕ — коэффициент мощности

Полученные результаты расчета используются для подбора конденсаторов нужных номиналов. Номинала именно расчетного значения вряд ли можно будет найти, поэтому правила подбора следующие:

  • если расчетное значение точно попало в существующий номинал, то в этом случае повезло — берете именно такой.
  • если совпадения нет, то рекомендуется выбирать емкость ближайшего нижнего номинального значения. Выбирать выше не следует (особенно для рабочих конденсаторов), так как существует вероятность значительного возрастания рабочих токов и перегрева обмоток.
  • По напряжению конденсаторы обязательно подбираются с номиналом не менее, чем в 1,5 раза выше напряжения сети, поскольку в момент пуска напряжение на самом конденсаторе всегда повышенное. Например, для однофазного напряжения 220 В рабочее напряжение конденсатора должно быть не менее 360 В, а по опыту электриков даже не менее 400 В.

Ниже мы приведем таблицу номинальных значений конденсаторов серий СВВ60 и СВВ65. Эти конденсаторы чаще всего применяют при подключении асинхронных двигателей. Серия СВВ65 отличается от серии СВВ60 металлическим корпусом. В качестве пусковых часто применяют электролитические конденсаторы серии CD60. Причем опытные профессионалы не рекомендуют использовать их в качестве рабочих, поскольку продолжительные время работы быстро выводит их из строя.

Полипропиленовые пленочные конденсаторы серий СВВ60 и СВВ65 Электролитические неполярные конденсаторы серии CD60
Изображение
Номинальное рабочее напряжение, В 400; 450; 630 220-275; 300; 450
Номинальный ряд, мкФ 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 150 5; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500

Иногда бывает рациональнее использовать два и более конденсатора, чтобы получить нужную емкость. При этом они могут быть соединены последовательно или параллельно. При параллельном соединении результирующая емкость будет складываться, при последовательном она будет меньше емкости любого из конденсаторов. Для расчета данного соединения мы также подготовили для вас специальный калькулятор.

Схема подключения «Треугольник»

Само подключение является относительно легким, происходит присоединения токопроводящего провода к пусковому конденсатору и к клеммам двигателя (или мотора). То есть если более упрощенно взять есть мотор в нем находятся три токопроводящие клеммы. 1 – ноль, 2 – рабочая, 3 –фаза.

Провод питания заголяется и в нем есть два основных провода в синей и коричневой обмотке, коричневая присоединяется к 1 клемме, ней же присоединяется и один из проводов конденсатора, ко второй рабочей клемме происходит присоединение второго провода конденсатора, ну а к фазе подключается синий провод питания.

Если мощность двигателя является маленькой, до полтора кВт, о в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большими мощностями обязательное использование двух конденсаторов, они между собой последовательно соединены, но между ними установлен пусковой механизм, в народе называемый «тепловой», который отключает конденсатор при достижении необходимого объёма.

Небольшое напоминание, что конденсатор с меньшей мощностью, пусковой, будет включаться на небольшой промежуток времени для увеличения пускового момента. Кстати модно использовать механический выключатель, который пользователь сам будет включать на заданное время.

Нужно понять – сама обмотка двигателя уже имеет подключение по схеме «звезда», но электрики ее с помощью проводов превращают в «треугольник». Тут главное распределить провода, которые входят в распределительную коробку.

Схема подключения “Треугольник” и “Звезда”

Функциональные возможности

В цепях постоянного тока элемент некоторое время накапливает заряд на обкладках и не пропускает электроны через диэлектрик. Это значит, что в начальный момент постоянный ток проходит через деталь до окончания заряда. Такое же происходит и при разряде.

Важно! Ток, который периодически изменяется, элемент пропускает через себя. Такое возможно, потому что двухполюсник циклически перезаряжается при смене полярности электричества.

Схема подключения «Звезда»

А вот если двигатель имеет 6 выходов – клемм для подключения, то его нужно раскрутить и посмотреть какие клеммы между собой взаимосвязаны. После этого она пере подключается все в тот же треугольник.

Для этого меняются перемычки, допустим на двигателе имеется 2 ряда клемм по 3 штуки, их номеруют слева направо (123,456), с помощью проводов последовательно соединяются 1 с 4, 2 с 5, 3 с 6, нужно в первую очередь найти нормативные документы и посмотреть на каком именно реле происходит пуск и окончание обмотки.

В этом случае условные 456 станут: нулем, рабочей и фазой – соответственно. К ним подключается конденсатор, как и в предыдущей схеме.

Когда конденсаторы подключены остается только опробовать собранную схему, главное не запутаться в последовательности соединения проводов.

Как подобрать конденсатор для запуска электродвигателя?

Если имеется необходимость подключить асинхронный трехфазный электромотор в бытовую сеть, можно столкнуться с проблемой – сделать это, кажется, совершенно невозможно. Но если знаете основы электротехники, то можно подключить конденсатор для запуска электродвигателя в однофазной сети. Но существуют и бесконденсаторные варианты подключения, их тоже стоит рассмотреть при проектировании установки с электромотором.

Простые способы подключения электродвигателя

Проще всего будет подключить мотор при помощи частотного преобразователя. Существуют модели этих устройств, которые делают преобразование однофазного напряжения в трехфазное. Преимущество такого способа очевидно – нет потерь мощности в электродвигателе. Но вот стоимость такого частотного преобразователя довольно высокая – самый дешевый экземпляр обойдется в 5-7 тыс. рублей.

Есть еще один способ, который используется реже, – применение трехфазной обмотки асинхронника для преобразования напряжения. В этом случае вся конструкция окажется намного больше и массивнее. Поэтому проще окажется рассчитать, какие конденсаторы нужны для запуска электродвигателя и установить их, подключив по схеме. Главное – не потерять мощность, так как работа механизма будет происходить намного хуже.

Особенности схемы с конденсаторами

Обмотки всех трехфазных электромоторов могут соединяться по двум схемам:

  1. «Звезда» – при этом концы всех обмоток подключаются в одной точке. А начала обмоток соединяются с питающей сетью.
  2. «Треугольник» – начало обмотки соединяется с концом соседней. В итоге получается, что точки соединения двух обмоток подключаются к сети питания.

Выбор схемы зависит от того, каким напряжением питается мотор. Обычно при подключении к сети переменного тока 380 В обмотки соединяются в «звезду», а при работе под напряжением 220 В – в «треугольник».

На рисунке выше:

а) схема соединения «звезда»;

б) схема соединения «треугольник».

Так как в однофазной сети явно не хватает одного питающего провода, нужно его сделать искусственно. Для этого применяются конденсаторы, которые сдвигают фазу на 120 градусов. Это рабочие конденсаторы, их оказывается недостаточно при пуске электромоторов мощностью свыше 1500 Вт. Чтобы осуществить запуск мощных двигателей, потребуется дополнительно включать еще одну емкость, которая облегчит работу во время старта.

Емкость рабочего конденсатора

Для того чтобы узнать, какие конденсаторы нужны для запуска электродвигателя при работе в сети 220 В, нужно использовать такие формулы:

  1. При подключении по схеме «звезда» С (раб) = (2800 * I1) / U (сети).
  2. При подключении в «треугольник» С (раб) = (4800 * I1) / U (сети).

Ток I1 можно измерить самостоятельно, используя клещи. Но можно использовать и такую формулу: I1 = P / (1,73 · U (сети) · cosφ · η).

Значение мощности Р, напряжения питания, коэффициента мощности cosφ, КПД η можно найти на бирке, которая приклепана на корпусе электродвигателя.

Упрощенный вариант расчета рабочего конденсатора

Если все эти формулы кажутся вам немного сложными, можно воспользоваться их упрощенной версией: С (раб) = 66 * Р (двиг).

А если упростить по максимуму расчет, то для каждых 100 Вт мощности электромотора требуется емкость около 7 мкФ. Другими словами, если у вас мотор 0,75 кВт, то вам потребуется рабочий конденсатор емкостью не менее 52,5 мкФ. После подбора обязательно произведите замер тока при работе мотора – его величина не должна превышать допустимые значения.

Пусковой конденсатор

В том случае, если на мотор воздействуют большие нагрузки либо его мощность свыше 1500 Вт, одним только сдвигом фазы не обойтись. Потребуется знать, какие необходимы еще конденсаторы для запуска электродвигателя 2,2 кВт и выше. Пусковой подключается в параллель с рабочим, но вот только он исключается из цепи при достижении оборотов холостого хода.

Обязательно пусковые конденсаторы должны отключаться – в противном случае происходит перекос фаз и перегрев электродвигателя. Пусковой конденсатор должен быть по емкости больше рабочего в 2,5-3 раза. Если вы посчитали, что для нормальной работы мотора требуется емкость 80 мкФ, то для запуска нужно подключать еще один блок конденсаторов на 240 мкФ. В продаже вряд ли можно встретить конденсаторы с такой емкостью, поэтому нужно производить соединение:

  1. При параллельном емкости складываются, напряжение рабочее остается таким, как указано на элементе.
  2. При последовательном соединении складываются напряжения, а общая емкость будет равна С (общ) = (С1*С2*..*СХ)/(С1+С2+..+СХ).

Желательно устанавливать пусковые конденсаторы на электромоторы, мощность которых — свыше 1 кВт. Лучше немного снизить показатель мощности, чтобы увеличить степень надежности.

Какой тип конденсаторов использовать

Теперь вы знаете, как подобрать конденсаторы для запуска электродвигателя при работе в сети переменного тока 220 В. После подсчета емкости можно приступить к выбору конкретного типа элементов. Рекомендуется применять однотипные элементы в качестве рабочих и пусковых. Неплохо показывают себя бумажные конденсаторы, обозначения у них такие: МБГП, МПГО, МБГО, КБП. Можно также использовать и зарубежные элементы, которые устанавливаются в блоках питания компьютеров.

На корпусе любого конденсатора обязательно указывается рабочее напряжение и емкость. Один недостаток у бумажных элементов – они имеют большие габариты, поэтому для работы мощного двигателя потребуется немаленькая батарея элементов. Применять зарубежные конденсаторы намного лучше, так как они имеют меньшие размеры и большую емкость.

Использование электролитических конденсаторов

Можно применять даже электролитические конденсаторы, но у них есть особенность – они должны работать на постоянном токе. Поэтому, чтобы установить их в конструкцию, потребуется использовать полупроводниковые диоды. Без них использовать электролитические конденсаторы нежелательно – они имеют свойство взрываться.

Но даже если вы установите диоды и сопротивления, это не сможет гарантировать полную безопасность. Если полупроводник пробивается, то на конденсаторы поступит переменный ток, в результате чего произойдет взрыв. Современная элементная база позволяет использовать качественные изделия, например конденсаторы полипропиленовые для работы на переменном токе с обозначением СВВ.

Например, обозначение элементов СВВ60 говорит о том, что конденсатор имеет исполнение в цилиндрическом корпусе. А вот СВВ61 имеет прямоугольной формы корпус. Эти элементы работают под напряжением 400. 450 В. Поэтому они могут без проблем использоваться в конструкции любого аппарата, где требуется подключение асинхронного трехфазного электродвигателя в бытовую сеть.

Рабочее напряжение

Обязательно нужно учитывать один важный параметр конденсаторов – рабочее напряжение. Если использовать конденсаторы для запуска электродвигателя с очень большим запасом напряжения, это приведет к увеличению габаритов конструкции. Но если применить элементы, рассчитанные на работу с меньшим напряжением (например, 160 В), то это приведет к быстрому выходу из строя. Для того чтобы конденсаторы функционировали нормально, нужно, чтобы их рабочее напряжение было примерно в 1,15 раза больше, чем в сети.

Причем нужно учитывать одну особенность – если применяете бумажные конденсаторы, то при работе в цепях переменного тока их напряжение нужно уменьшать в 2 раза. Другими словами, если на корпусе указано, что элемент рассчитан на напряжение 300 В, то эта характеристика актуальна для постоянного тока. Такой элемент можно использовать в цепи переменного тока с напряжением не более 150 В. Поэтому лучше набирать батареи из бумажных конденсаторов, суммарное напряжение которых — около 600 В.

Подключение электромотора: практический пример

Допустим, у вас имеется электрический двигатель асинхронного типа, рассчитанный на подключение к сети переменного тока с тремя фазами. Мощность — 0,4 кВт, тип мотора — АОЛ 22-4. Основные характеристики для подключения:

  1. Мощность — 0,4 кВт.
  2. Напряжение питания — 220 В.
  3. Ток при работе от трехфазной сети составляет 1,9 А.
  4. Соединение обмоток двигателя производится по схеме «звезда».

Теперь осталось провести расчет конденсаторов для запуска электродвигателя. Мощность мотора сравнительно небольшая, поэтому, чтобы его использовать в бытовой сети, нужно подобрать только рабочий конденсатор, в пусковом надобности нет. По формуле вычисляете емкость конденсатора: С (раб) = 66*Р (двиг) = 66*0,4 = 26,4 мкФ.

Можно использовать и более сложные формулы, значение емкости будет отличаться от этого незначительно. Но если нет подходящего по емкости конденсатора, нужно произвести соединение нескольких элементов. При параллельном соединении емкости складываются.

Обратите внимание

Теперь вы в курсе, какие конденсаторы для запуска электродвигателя лучше всего использовать. Но мощность упадет примерно на 20-30 %. Если приводится в движение простой механизм, то это не почувствуется. Частота вращения ротора останется примерно такой же, какая указана в паспорте. Учтите, что если мотор рассчитан на работу от сети 220 и 380 В, то в бытовую сеть он включается только при условии, что обмотки соединены в треугольник. Внимательно изучите бирку, если на ней имеется только обозначение схемы «звезда», то для работы в однофазной сети придется вносить изменения в конструкцию электромотора.

Как выбрать конденсаторы для подключения однофазного и трехфазного электродвигателя в сеть 220 В

Очень часто случается, особенно в быту, что надо подключить асинхронный электродвигатель к стандартной однофазной сети переменного тока с действующим напряжением 220 вольт. А двигатель при этом трехфазный! Данная задача является типичной, когда нам нужно установить наждак или сверлильный станок например в гараже.

Чтобы все правильно устроить, используют так называемые пусковые и рабочие (фазосдвигающие) конденсаторы. Вообще конденсаторы бывают разного типа, разной емкости, и прежде чем приступать к построению цепи, необходимо выбрать конденсаторы подходящего типа, номинального напряжения и правильно рассчитать их требуемую емкость.

Всем известно, что электрический конденсатор представляет собой две разделенные диэлектриком проводящие обкладки, и служит для накопления, временного хранения и отдачи электрического заряда, то есть электрической энергии.

Есть два типа конденсаторов, полярные и неполярные. Неполярные допускается использовать в цепях переменного тока, полярные — нет. Если полярный конденсатор включить в цепь переменного тока, то очень скоро в слое диэлектрика произойдет короткое замыкание, и конденсатор выйдет из строя. Неполярные же одинаково эффективно реагируют на напряжение любой полярности, прикладываемое к его обкладкам, и на переменное — тоже.

Итак, выбирая рабочий конденсатор для трехфазного двигателя, необходимо принять в расчет несколько основных параметров рабочей цепи переменного тока. Указанная ниже формула в приведенном виде для вычисления емкости рабочего конденсатора в микрофарадах, при частоте тока в сети 50 Гц, выглядит так:

Здесь, в зависимости от схемы соединения обмоток статора двигателя («звезда» или «треугольник») коэффициент в начале формулы примет значение 4800 — для «треугольника» или 2800 — для «звезды». I – номинальная величина действующего тока статора подключаемого двигателя.

Номинальный ток I указывается на шильдике (справочной табличке) на корпусе двигателя, либо, если табличка затерта, измеряется токовыми клещами в одной из фаз при обычном трехфазном питании двигателя. U – действующее (среднеквадратичное) напряжение переменного тока сети, к которой будет подключен двигатель с конденсатором, например 220 вольт.

Есть и более простой подход к выбору емкости рабочего конденсатора — на каждые 100 ватт мощности двигателя в соединении «звезда» принимается 7 мкф емкости конденсатора. Если же соединение «треугольник», то емкость на 100 ватт будет 12 мкф.

При выборе емкости конденсатора очень важно не превысить расчетную, иначе ток через обмотку статора превысит номинал, двигатель будет перегреваться и вообще может быстро сгореть.

Когда пуск двигателя осуществляется под нагрузкой, а ведь зачастую так и происходит, поскольку наждачный круг или сверлильное оборудование имеют значительную массу, пусковой ток должен быть больше номинального.

Для этого к рабочему конденсатору на время пуска параллельно подключается дополнительный — пусковой конденсатор. Этот конденсатор нужен лишь в течение нескольких секунд, пока двигатель не выйдет на номинальные обороты. После этого пусковой конденсатор отключается и в цепи остается лишь рабочий фазосдвигающий конденсатор.

Емкость пускового конденсатора выбирается в 2,5-3 раза больше емкости рабочего конденсатора. А номинальное напряжение этого конденсатора должно быть по возможности хотя бы в 1,5 раза больше питающего сетевого напряжения. Иногда даже используют последовательно соединенные конденсаторы для получения требуемой пусковой емкости и запаса по напряжению.

Если же двигатель не трехфазный, а однофазный, то у него может присутствовать пусковая обмотка, служащая для создания вращающего момента в секунды запуска. Тут тоже должен присутствовать фазосдвигающий конденсатор. Но однофазные двигатели могут работать в различных режимах.

Если пусковой конденсатор и пусковая обмотка питаются лишь во время запуска, то берут 70 микрофарад на 1 киловатт мощности двигателя. Если рабочий конденсатор вместе с дополнительной обмоткой питаются все время, то берут около 30 микрофарад на киловатт.

Если же пусковой конденсатор подключается на время старта, а рабочий конденсатор продолжает оставаться подключенным во время работы оборудования, то, как правило, значение общей емкости пускового и рабочего конденсатора выбирается из соотношения 1 микрофарад на 100 ватт мощности.

Приведенная в данной статье информация поможет вам рассчитать емкости рабочего и пускового конденсаторов. Пусковой конденсатор удобно приспособить так, чтобы он подключался и отключался специально выведенной кнопкой без фиксации. Однако если после точных расчетов и подключения конденсатора двигатель начинает во время работы ощутимо греться, емкость рабочего конденсатора следует уменьшить.

Что же касается номинального напряжения конденсатора, то обычно конденсаторы на рабочее напряжение меньше 450 вольт не применяют. Лучше всего если конденсатор будет рассчитан на 500 или 600 вольт по переменному току.

В качестве пусковых и рабочих фазосдвигающих конденсаторов замечательно подходят конденсаторы с полипропиленовым диэлектриком, которые так и позиционируются на рынке как «пусковые конденсаторы». Если конденсаторов данного типа в наличии нет, то подойдут и «бумажные» типа МБГО, лишь бы максимальное напряжение соответствовало.