Как привязать инструмент на токарном ЧПУ?

  • Услуги
  • Продукция
  • Заказ
  • Контакты
  • Резка металла
    • Плазменная резка
    • Лазерная резка
    • Газовая резка
  • Сварочные работы
    • Аргонная сварка
    • Электро дуговая сварка
    • Полуавтомат сварка
  • Гибка металла
  • Токарно / Фрезерные работы
  • Слесарные работы
  • Доставка

Наши преимущества

Привязка инструмента на станках с ЧПУ

В наше время кибернетических достижений токарное оборудование оснащается ультрасовременными аппаратами с числовым программным управлением. Компьютеризированные системы ЧПУ значительно облегчают процесс изготовления тех или иных деталей. На сегодняшний день лидером в сфере производства токарных станков и аппаратов ЧПУ является японская фирма FANUC.

Обработка внешних или внутренних поверхностей деталей с применением систем ЧПУ FANUC осуществляется в автоматическом режиме, программируемом в один или ряд этапов. Независимо от сложности работы в подобных технологических циклах можно изготовлять элементы с криволинейным или ступенчатым профилем.

Особенности привязки инструмента

Чтобы правильно выполнить привязку инструмента, наладчик должен точно определить вылеты инструментов по координатам Х и Z, а затем, нажав на пульте управления кнопку MENU OFFSET, записать их в таблицу корректоров.

Большинство современных моделей токарных станков оборудованы специальными датчиками, призванными упростить процесс привязки инструмента. В том же случае, когда станок не оснащен датчиком привязки, следует, при необходимости, подрезать торец заготовки или подточить ее по диаметру.

Описание всей процедуры и методики привязки на станках с датчиками можно прочесть в документации по программированию аппаратов числового программируемого управления и эксплуатации токарного оборудования, оснащенного системой ЦПУ FANUC.

Определение начала координат и вылета инструмента

При вычислении вылетов инструмента общая методика, определяющая электронную или механическую привязку инструмента, в. качестве первого этапа включает в себя определение начала координат. При этом отправной точкой по оси Х, как правило, считается самый центр держателя осевого инструмента, а лобовая поверхность револьверной головки (или поверхность резцедержателя типа «В» на токарном оборудовании, оснащенном резцедержателями VDI) служит началом отсчета по оси Z.

Следует особо отметить, что оси координат токарного станка не соотносятся с направлением осей вылета инструмента.

Вышеописанная методика определения вылетов инструмента составляется, исходя из следующих обстоятельств. На всех без исключения токарных станках ось вращения детали совпадает с центром держателя осевого инструмента. При этом, например, для осевого режущего инструмента (сверл, борштанг, зенкеров, метчиков и т.д.) корректор всегда принимает значение 0.

Помимо этого, при изготовлении в соответствии с международными стандартами ИСО резцов для расточки в расчет принимается расстояние между верхней точкой режущей пластины и центром резцедержателя. Это значение, как правило, определено в каталоге инструментов. Таким образом, в таблицу корректоров вводится это удвоенное значение по оси Х, а также значение вылета инструмента по оси Z.

Нелишним будет заметить, что ускорить процедуру наладки токарного станка, оборудованного датчиком привязки инструмента, можно именно благодаря оперативному вводу в таблицу корректоров значений вылета, указанных в каталоге или полученных путем непосредственных замеров. Также в этом в этом случае закреплять инструмент следует клином, настроив резцедержатель таким образом, чтобы его поверхность была вровень с лобовой поверхностью револьверной головки.

Определение нуля детали

Выполнив привязку инструмента, необходимо определить ноль детали. При определении нуля детали, ноль корректора обычно не учитывается, так как эти два значения никак между собой не соотносятся. Как правило, за ноль детали принимают ее торец.

Произвести данную операцию в системе ЧПУ помогают следующие команды:
G50 (без сохранения нуля детали);
G54-59 (c сохранением нуля детали).

Как сделать привязку инструмента на станке с ЧПУ

Как сделать привязку на фрезерном станке. Соединение систем координат фрезы, детали и станка. 9 способов выставления ноля детали и привязки инструмента.

Вам интересно как сделать привязку инструмента на станке с ЧПУ? Попробуем разобрать этот вопрос подробно и разложить все по полочкам.

На токарном станке и на фрезерном станке после закрепления обрабатываемой заготовки необходимо выставить ноль. И неважно, с числовым программным управлением он или нет.

Привязка — ответственная операция. При ошибочном, неаккуратном выполнении процесса возможны серьезные повреждения оборудования. Что уж говорить о поломанных фрезах и не соответствующих размерам деталях.

Когда это надо

Понятие о привязке содержит в себе две части. Первая связана с системой координат детали. Вторая с системой координат станка.

Если у вас простой ЧПУ, в котором смена оснастки происходит вручную, а оправка только одна, то выставлять ноль придется каждый раз при смене фрезы или сверла.

Но когда у вас несколько оправок или даже есть возможность автоматической смены инструмента, то удобнее будет перед обработкой ввести все данные о коррекции.

Так фрезерная обработка не будет прерываться. Информацию о размерах инструмента и его вылете надо установить один раз. После этого надо будет связывать положение новых заготовок только с одним из инструментов.

Различные варианты

1. Торцевание

Здесь все просто. Выставляем ноль заведомо глубже самой детали на небольшом расстоянии. И снимаем материал. Получившаяся плоскость соответствует нулевому положению.

Недостатки: не каждая деталь подходит, иногда необходимо торцевую грань оставить не тронутой.

2. Касание

Переводим подачу в ручной режим, для подведения инструментов близко к детали. Переключаем подачу на минимум и медленно приближаемся. Услышав шорканье или увидев, что фреза начинает снимать стружку — останавливаемся и обнуляемся. Инструмент на станке привязан.

Это из быстрых, но не идеальных способов. Подходит только для заготовок, в которых эту грань необходимо будет стачивать.

3. Контактный способ

Если обрабатываемый материал токопроводящий, то можно установить систему управления, которая при коротком замыкании, вызванным касанием фрезы детали, выставляет ноль.

Любые контактные способы не подойдут при обработке дерева, камня и пластика.

4. Концевые меры

Оставляем некоторое расстояние между фрезой и деталью. Такое, чтобы концевая мера не проходила между ними. Постепенно увеличивая расстояние, пробуем вставить меру. Когда это получилось — обнуляем, добавив в коррекцию величину концевой меры.

Так выставлять ноль удобно. Не портятся грани заготовки. Но тратится много времени.

5. Датчики типа Renishaw

Современные токарные и фрезерные станки поставляются с таким датчиком в комплекте. Он может работать как автоматически, так и в ручном режиме. В первом случае необходимо подвести фрезу поближе к датчику наладки и программные функции за вас все сделают. А затем можно будет выставить ноль заготовки специальным датчиком для установки детали. Самый быстрый и удобный способ.

6. Индикатор часового типа

Очень похоже на предыдущий способ, только никакой автоматики. Зажали индикатор, подвели инструмент. Потом проделали то же с заготовкой. Так привязывал еще мой дед.

7. Штангенрейсмус

Если стоит система автоматической смены инструментов, привязать все лучше заранее. Для этого используется штангенрейсмус. Вставляем фрезу в оправку и измеряем. Значения вводим в настройки коррекции на инструмент. Это не простой метод, но если осилить такую привязку, то дело пойдет быстрее.

8. Лист А4

Вы никогда не слышали о фануке (fanuc)? У вас простой фрезерный станок для обработки дерева? Тогда можно использовать неточный, но не требующий дополнительной возни и затрат способ. Постепенно опускаем фрезу к материалу, просунув между ними обычный лист бумаги. В процессе передвигаем листок из стороны в сторону. Как только его зажало — выставляем ноль. Это относится не только к фрезерному станку, в простых токарных — по той же системе.

Читайте также  Какое масло применять для смазки цепи бензопилы?

9. На глаз

Для некоторых операций, таких как сверление или контурная обработка, высокая точность привязки инструмента вообще не нужна. Достаточно придвинуть инструмент к заготовке как можно ближе, оставив видимый глазу просвет.

Самым тревожным является первый запуск токарного станка. То же касается и фрезерных станков. Даже страшно нажимать кнопку Cycle Start. Оборудование, у которого числовое программное управление, стоит немалых денег. С опытом это проходит. Но не стоит забывать, что большинство аварий происходит именно из-за ошибок, связанных с привязкой. Берегите свои станки.

Как научиться работать на станке с ЧПУ?

Умение работать на станке открывает перед человеком большие возможности. В этой статье Вы найдете краткую базовую информацию о том, что необходимо знать при работе на станке, с какими трудностями может столкнуться оператор станка и как лучше построить свое обучение.

Для начала работы придется освоить управление станком. Сейчас существует множество различных систем числового программного управления (Mach3, Linux CNC, USB CNC, Rich Auto, Fanuc, OSAI, Sinumerik, OSP, Heidenhain и многие другие). Все они отличаются внешне, имеют определенные различия в функционале, обладают своими преимуществами, недостатками, нюансами, но, в то же время, все они работают по одному и тому же принципу. Достаточно изучить одну систему ЧПУ, чтобы понимать принцип работы всех остальных.

Первое, с чем придется столкнуться оператору, это включение станка. После подачи питания и прогрузки системы управления, запускается этап инициализации (определения) исходных координат положения шпинделя станка. Любой станок с ЧПУ имеет одну неизменную нулевую точку — машинный ноль. Ее инициализация и происходит в автоматическом режиме при включении станка, либо в ручном режиме при помощи команды «HOME» (Домой). При выполнении этой команды рабочие органы станка поочередно по каждой оси перемещаются до концевых выключателей. В первую очередь перемещение идет по оси Z до упора вверх, затем в крайнее положение по оси X, Y и т.д. Когда шпиндель достигает крайнего положения по одной из осей, срабатывает концевой датчик и происходит инициализация машинного нуля.

Если взять стандартный трехосевой или четырехосевой станок, то машинный ноль у него находится в углу стола. Относительно этой точки настраиваются все остальные базовые положения станка. В частности, координаты положения, в котором происходит измерение инструмента (при наличии функции автоматического измерения инструмента на станке), координаты точки смены инструмента, координаты других нулевых точек, которые оператор настраивает для обработки своих деталей. Наличие неизменяемого машинного нуля дает возможность оператору задать не одну, а множество нулевых точек для обработки заготовки в любом удобном месте рабочего стола. Каждая нулевая точка прописывается в стойке в виде смещения от машинного нуля. В английских версиях систем ЧПУ таблица нулевых точек так и называется «offset table», т.е. «таблица смещений». По умолчанию на экране системы ЧПУ мы видим координаты текущего положения относительно нуля детали. Оператор всегда может изменить режим отображения координат на машинные и посмотреть текущее положение относительно машинного нуля.

ПЕРЕКЛЮЧЕНИЕ РЕЖИМА ОТОБРАЖЕНИЯ КООРДИНАТ В MACH3

Такая система нулевых точек очень удобна при выполнении управляющих программ на станке с ЧПУ. В ходе выполнения программы всегда возникает необходимость делать вспомогательные перемещения (точка смены инструмента, точка «парковки» инструмента). Сделать это в нулевой точке, настроенной оператором, проблематично, так как ее мы настраиваем индивидуально для каждой обработки в зависимости от расположения заготовки на столе. Это означает, что нам при каждом изменении нулевой точки пришлось бы заново отмерять координаты до всех вспомогательных позиций и вручную прописывать их в программе. Чтобы этого избежать, все подобные вспомогательные перемещения осуществляются в машинной системе координат, так как она неизменна и координаты любой точки в ней всегда одни и те же. Обработка же самой детали происходит относительно нулевой точки настроенной оператором в зависимости от расположения заготовки. Для переключения между системами координат (нулевыми точками) во время выполнения управляющих программ используются специальные команды, которые закладываются в постпроцессор при его настройке.

Любая система ЧПУ имеет три основных режима работы:

&nbsp &nbsp&nbsp &nbsp1. Ручной режим управления ( Manual ). Когда оператор управляет станком с пульта или с клавиатуры.
&nbsp &nbsp&nbsp &nbsp2. Режим ручного ввода данных ( Manual Data Input ). Когда оператор управляет станком путем покадрового ввода команд в консоль и их выполнения. Например, включить шпиндель со скоростью вращения 15000 об/мин (S15000 M3), переместиться в определенную координату с подачей 5000 мм/мин (G1 X50 Y50 F5000) и т.д.
&nbsp &nbsp&nbsp &nbsp3. Автоматический режим управления ( Auto ) – это основной режим работы станка с ЧПУ в котором происходит автоматическое выполнение управляющих программ. Оператор всегда имеет возможность прервать выполнение программы, возобновить ее выполнение, начать выполнение с заданного кадра, внести в программу корректировки и т.д.

Для комфортной и уверенной работы на станке оператору предстоит освоиться с этими режимами работы, научиться настраивать нулевые точки, измерять инструмент, производить его смену, быстро совершать аварийный останов станка при необходимости, возобновлять работу станка после аварийных остановов и внезапного отключения электричества и т.п.

Помимо этого обязательно следует освоить коды управляющих программ. Знание G-кодов и M-кодов, умение читать программу позволяют не только самостоятельно вносить правки в управляющий код не отходя от станка, но и помогают избежать десятков вопросов в ходе работы. Если же этих знаний не будет, то любая ошибка может оказаться для оператора непонятной, и, чаще всего, он не сможет решить проблему самостоятельно.

Для изучения всех этих вопросов существуют специальные мануалы (инструкции). Если речь идет о работе с системой ЧПУ станка, то для каждой системы ЧПУ существует свое «Руководство по эксплуатации», которое всегда можно найти в свободном доступе. Если речь идет об изучении программирования (G-коды, M-коды), то и по этой тематике есть огромное количество книг, инструкций, статей в интернете и изучить этот вопрос при желании не составит труда. G-код основан на едином стандарте, поэтому он одинаков для всех систем ЧПУ (если не считать систему Heidenhain), однако отличия и нюансы все равно существуют. Чтобы учесть такие особенности, можно обратиться к «Руководству по программированию», идущему к конкретной системе ЧПУ.

В качестве примера приведу мануал по системе Mach3 (прямая ссылка на скачивание документа с официального сайта разработчиков Mach3), который включает в себя как вопросы, связанные с эксплуатацией этой системы управления, так и информацию по программированию с помощью G-кодов и M-кодов, применительно к этой системе управления.

С наилучшими пожеланиями!

Автор: Дмитрий Головин &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp Наверх

Токарная обработка с ЧПУ — процессы, операции и оборудование часть 2

Токарная обработка с ЧПУ – это современный способ обработки металла, позволяющий изготавливать различные металлоизделия с высокой точностью и в полном соответствии с государственными стандартами, нормативами, а также чертежами заказчика.

Читайте также  Чем чистить мойку из нержавейки?

Это вторая часть статьи про токарную обработку, процессы оборудования и операции с ней связанные, перед прочтением советуем ознакомится с первой частью данной статьи в нашем блоге.

Типы токарных станков:

Широкий ассортимент токарных станков с ЧПУ предлагает широкий спектр возможностей. Каждый из них имеет уникальный набор функций, при этом некоторые из них более автоматизированы, чем другие. Таким образом, все находят своё применение, будь это небольшая мастерская с парой рабочих мест или серийное производство для больших количеств.

Настольный токарный станок

Название предполагает, что он достаточно мал, чтобы поставить его на верстак. Они все же больше, чем микро-или мини-токарные станки.

Отличный выбор, чтобы выполнить общую механическую обработку или специальный инструмент для любителя, он может выполнять большую часть необходимых операций. Настольный токарный станок требует умелого мастера, так как в нём практически отсутствует автоматизация, что накладывает большую ответственность на оператора.

Самый распространенный вид токарного станка. Токарно-винторезный станок предназначен для выполнения разнообразных токарных работ по чёрным и цветным металлам, включая точение конусов, нарезание метрической, модульной, дюймовой и питчевых резьб. Название токарный станок с механическим приводом закрепилось за рубежом с 19 века, когда паровая машина выделила этот образец среди других ручных токарных станков. С начала 20 века начался переход на электродвигатели. Использование редукторов в передней бабке упростило выбор скорости шпинделя, а высокоскоростные станки стали нормой. Выросшая мощь станков подтолкнула отрасль к изобретению новых способов увеличения срока службы инструмента. Сменные твердосплавные пластины как раз позволили это сделать.

В результате токарные станки с ЧПУ могут выполнять обработку с ЧПУ на высоких скоростях, что приводит к сокращению сроков производства и снижению затрат. Хотя они все еще распространены в мастерских токарно-винторезные станки заложили основу для повышения производительности и автоматизации обработки.

Инструментальный токарный станок похож на токарно-винторезный станок, но у него есть несколько отличий. Обычно они меньше по размеру, и могут поместиться в более тесных помещениях. В то же время доступны некоторые дополнительные возможности, что делает его скорее машиной более высокого уровня, чем той которая подойдет новичку.

Инструментальные токарные станки для цехов включают в себя патроны и цанги, конические приспособления, среди прочего, чего нет, например, в более простых станках.

Эти типы токарных станков в значительной степени взаимозаменяемы в зависимости от операций, которые они могут выполнять. Как вы узнали ранее, использование револьверной головки открывает широкий спектр возможностей для автоматизации. Кроме того, на одном рабочем месте можно выполнять гораздо больше операций.

От точения и растачивания до сверления, нарезания резьбы и изготовления шпоночных пазов — все возможно без смены инструмента. Револьверная головка вмещает в себя всю необходимую оснастку сразу, так что вы можете легко переходить от одного процесса к другому.

Сочетание ЧПУ с меньшим количеством ручных операций, производство почти идентичных обрабатываемых деталей партиями — сильная сторона токарных станков этого типа.

Многошпиндельный токарный станок

Многошпиндельный токарный станок, имеет более одного шпинделя. Дополнительная мощность особенно подходит для крупносерийного производства.

Настройка машины требует довольно много времени, поэтому сочетание этого и высокой стоимости самой машины требует больших объемов производства, чтобы окупиться. Учитывая это, они могут создавать аналогичные детали с высокой точностью, малым временем цикла и очень небольшим объемом ручной работы, помимо начальной настройки.

Таким образом, крупносерийное производство может значительно снизить стоимость обработки с ЧПУ.

Хотя некоторые из вышеупомянутых типов станков также поддерживают систему ЧПУ, полноценный токарный станок с ЧПУ заслуживает отдельного упоминания.

ЧПУ относится к компьютерному числовому контролю, который в некоторой степени заботится об управлении станком. Это зависит от конкретного оборудования, так как они могут быть полностью автоматическими или полуавтоматическими.

Полуавтоматические токарные станки с ЧПУ требуют немного больше работы от оператора станка, тогда как полностью автоматические центры могут делать все, от монтажа заготовок до смены инструментов.

Высокоточные станки с ЧПУ — лучшее, что может предложить современная промышленность. Возможна оцифровка всего процесса от создания САПР до полностью готовой детали. Кроме того, кожухи значительно снижают риск во время обработки, поскольку рабочие фактически не подвергаются воздействию каких-либо движущихся компонентов, контролируя все необходимое с экрана компьютера.

Идентификация оси на токарном станке с ЧПУ:

Самый распространенный способ идентификации осей на традиционном токарном станке с ЧПУ выглядит так:

Ось Z проходит параллельно оси заготовки. Таким образом, инструмент может перемещаться вдоль боковой поверхности материала, в то время как деталь вращается вокруг оси Z (C). Движение по оси Z определяет длину задания.

Как видите, ось X перпендикулярна оси Z. Следовательно, инструмент может перемещаться к детали и от нее по оси X для определения диаметра детали.

Различные операции:

Токарная обработка с ЧПУ подходит для выполнения широкого круга операций. Некоторые из них мы уже назвали, но давайте рассмотрим их подробнее, чтобы внести ясность в возможности токарных станков.

Точение:

Точение — самая распространенная операция. Одноточечный инструмент перемещается вдоль оси заготовки для удаления материала с поверхности детали. Он может создавать различные контуры, такие как ступеньки, конусы и т. Д. Обычно для достижения конечного результата необходимо несколько проходов.

Из-за высокой точности, достигаемой при точении, пределы и посадки обычно выбираются для системы отверстий. Достичь жестких допусков с помощью токарного станка с ЧПУ проще, чем делать то же самое при сверлении отверстия.

Торцовка:

Торцовка — удаляет слой материала с торца заготовки. Обычно цель состоит в том, чтобы достичь желаемой отделки поверхности. Поскольку глубина резания не должна быть очень большой, это можно сделать за один проход. Движение режущего инструмента перпендикулярно оси вращения.

Прорезание канавок на токарном станке:

Прорезание канавок. Как и при торцевании, инструмент движется перпендикулярно оси вращения. Вместо того, чтобы обрезать конец заготовки, где-то по бокам выполняется прорезание канавки. Инструмент для одноточечной токарной обработки может выполнять резку за один проход, если ширина пропила равна ширине инструмента. В противном случае потребуется несколько разрезов.

Отрезка на токарном станке:

Отрезка — название описывает эту операцию точения очень точно. Сам процесс выглядит как нарезание канавок, но режущий инструмент будет доходить до оси детали. Это означает, что он отрезает часть детали.

Нарезка резьбы на токарном станке:

Сверление на токарном станке:

Сверление — первая внутренняя операция в этом списке. Говоря о традиционном точении, сверление может выполняться на конце заготовки, прямо по оси. Поскольку деталь все равно вращается, резец инструмента может оставаться неподвижным. Новые токарные центры с ЧПУ могут использовать подвижную оснастку для изготовления перпендикулярных отверстий по бокам или в других местах.

Расточная операция:

Расточная операция — противоположность точению. Все те же функции можно выполнять, только на внутренней поверхности. Расточка требует сначала некоторого сверления, чтобы освободить место для вставки инструментов в заготовку. Оттуда можно увеличить отверстие с помощью одноточечных резцов, а также добавить ступени, фаски и т. д.

Читайте также  Мотокоса и триммер в чем разница?

Операция развертка на токарном станке:

Развертка — это процесс обработки, при котором инструмент с несколькими зубьями входит в существующее отверстие, чтобы увеличить его. Результат имеет очень гладкую поверхность с жесткими инженерными допусками. Сама операция изначально похожа на сверление.

Нарезание резьбы внутри заготовки на токарном станке:

Нарезание резьбы внутри заготовки — аналогично развертке, для данной операции требуется предварительно просверленное отверстие. Метчик входит в имеющееся отверстие, чтобы нарезать внутреннюю резьбу. Требования к имеющемуся отверстию связаны с размером резьбы – она должна быть близка к кончику зубьев резьбы.

Подходящие материалы для токарной обработки:

Помимо типов токарных станков, которые мы описали ранее, есть другие категории, основанные на подходящих материалах для токарного станка. Для дерева, металла и стекла используются разные токарные станки, потому что все они требуют определенных качеств, а также скорости резки.

Когда дело доходит до профиля материала, то приветствуются квадратные, круглые, шестиугольные заготовки и т. д. Следует учесть, наличие профиля, отличного от круглого, может пригодиться, если заключительная часть не является круглой на всех участках.

Подходящие материалы для токарной обработки включают:

  • Металл;
  • Дерево;
  • Стекло;
  • Пластик;
  • Воск и др.

Вывод:

Токарная обработка является одним из столпов обрабатывающей промышленности. Получение точных результатов для осесимметричных деталей лучше всего делать с помощью этого метода изготовления. Гибкость и производственные мощности позволяют производить крупносерийное производство практически с одинаковыми результатами.

Сегодня большие обрабатывающие центры с ЧПУ могут включать в себя как фрезерование с ЧПУ, так и токарную обработку. Фрезерование добавляют дополнительный уровень возможностей, делая эти станки действительно мощными для создания сложных деталей.

Автоматический щуп привязки инструмента на токарном станке

В этом видео мы покажем Вам как работать с автоматическом щупом для привязки инструмента на токарных центрах Haas с ЧПУ. Щуп предлагает нам 3 режима работы.

Ручной режим (Manual) используется для самой первой привязки инструмента.

Автоматический режим (Automatic) применяется для обновления значений или после замены пластины.

Режим проверки износа или поломки инструмента (Break Detect) используется для контроля состояния инструмента. Разница имеющегося и полученного значений не должна превышать заданную дельту.

Ручной режим

Чтобы начать работу со щупом, нажмите кнопку MDI. Затем нужно выбрать соответствующую вкладку меню и нажать ENTER. Мы переходим в ручной режим привязки. Наш револьвер имеет 5 инструментов, которые ранее не обмерялись. Давайте в ручном режиме привяжем каждый инструмент с помощью щупа.

Проверьте, что выбран ручной режим MANUAL. В рабочей позиции находится инструмент номер 12, поэтому в поле «Номер инструмента» (TOOL NUMBER) записывается 12. Это поле всегда отображает номер инструмента, который сейчас находится в револьвере в рабочей позиции. Введите номер коррекции (TOOL OFFSET), который вы будет использовать для этого инструмента. Как правило, номер коррекции совпадает с номером инструмента.

Далее нужно задать тип инструмента (TOOL TIP DIR), который зависит от его конфигурации и направления режущей кромки. В данном случае, мы обмеряем инструмент с типом 2. Мы не можем ввести значение в поле «Допуск» (TOLERANCE), поскольку это поле активно только в режиме проверки износа инструмента.

Отведите револьвер на безопасное расстояние и переведите руку со щупом для привязки в рабочую позицию, нажав F1. У нас есть данные для инструмента номер 12, и мы готовы к его обмеру. С помощью ручного маховичка подводим инструмент по осям X и Z к щупу, не доходя до его края по диагонали примерно 6–8 мм. На экране есть изображение, которое подсказывает нам, в каком направлении нужно подводить инструмент.

Если дверь станка открыта, то вам нужно будет удерживать кнопку CYCLE START. При закрытой двери нажмите CYCLE START, инструмент коснется щупа по осям Z и X, двигаясь в указанных направлениях. Полученные результаты запишутся в таблицу.

Обратите внимание, что программа в G-коде сгенерируется в окне MDI. Она может использоваться в дальнейшем.

Необходимо отвезти револьвер в безопасное положение от измерительного щупа для смены инструмента. Продолжайте, чтобы определить все оставшиеся смещения. Когда вы закончите обмер всех ваших инструментов, не забудьте нажать клавишу F1, чтобы вернуть руку в исходное положение.

Наши инструменты теперь привязаны, но нам ещё нужно выбрать рабочее смещение и задать значения по X и Z. Выбираем G54. Используя любой из инструментов, которые мы уже привязали, коснемся им поверхности детали и нажмем «Измерение по Z». Расстояние от поверхности датчика до торца детали загрузится в G54.

Автоматическими режим

Вы можете обновить коррекции инструмента в любое время, например, после замены или поворота пластины. Это делается так. Выбираем автоматический режим и нажимаем стрелку вниз, чтобы задать номер инструмента, который мы хотим перепривязать. Когда инструмент и коррекции выбраны, нажимаем CYCLE START. Выбранный инструмент встанет в рабочую позицию, рука повернется и инструмент коснется датчика, двигаясь по осям Z и X. Повторите эти действия для всех инструментов, которые нужно обновить.

Режим проверки износа или поломки инструмента

Режим проверки износа или поломки инструмента позволяет определить разницу между исходными значениями и текущими. Для этого режима устанавливается специальный допуск на износ инструмента.

Выберите режим Break Detect, номер инструмента и номер коррекции. Теперь нужно задать величину допуска (TOLERANCE) для износа для этого конкретного инструмента или пластины. В этом примере мы задаем значение 0,004 дюйма. После того, как оператор нажмёт CYCLE START, револьвер повернется, выбранный инструмент встанет в рабочую позицию и начнет двигаться к измерительному щупу.

Если разница между исходными значениями и полученными превысит допуск, который мы ранее установили, то станок сообщит нам о этом. Мы получим сообщение, что пластина изношена. При запуске в этом режиме Break Detect, сформированная программа сохраняется в MDI. Если добавить этот программный код в основную программу, то можно будет в автоматическом режиме следить за износом инструмента.

Чтобы вставить эту программу из MDI в основную программу обработки, нажмите F4, выберите из списка первый вариант — «Выбрать / Создать программу» (Select / Create Program) и найдите программу, которую вы хотите изменить. Теперь просто перемещаем курсов в нужное место, т.е. в место, куда мы хотим вставить нашу подпрограмму, и нажимаем ENTER.

Вот быстрая демонстрация работы этого режима Break Detect. Запускаем нашу основную программу обработки. После окончания операции сверления, прежде чем перейти к чистовому растачиванию, мы автоматически проверим износ инструмента. Пластина этого расточного резца находится в заданном допуске. Можно продолжать работу. Такая проверка особенно важна для ответственных чистовых операций. В вашем распоряжении имеются 3 режима для измерения и контроля износа инструмента. Они упрощают работу на станке Haas и помогут производить качественные детали.