Как подразделяются сплавы на основе меди?

Медь и сплавы на ее основе.

Медь имеет температуру плавления 1083 °С, обладает очень высокой электро- и теплопроводностью. Медь хорошо сопротивляется коррозии в обычных атмосферных условиях, в пресной и морской воде и других агрессивных средах, но обладает плохой устойчивостью в сернистых газах и аммиаке. Предел прочности меди может быть повышен с помощью холодного деформирования до 450 МПа. Медь хорошо обрабатывается давлением, но плохо резанием, имеет невысокие литейные свойства из-за большой усадки.

В чистом виде медь широко используют для изготовления электропроводов, деталей электрических машин и аппаратов.

Сплавы на основе меди обладают высокими технологическими и механическими свойствами, коррозионной стойкостью, хорошо сопротивляются износу.

Медные сплавы подразделяются на латуни и бронзы.

Латуни (ГОСТ 17711-93, 15527-2004) — сплавы меди с цинком.

По химическому составу латуни делятся на двойные и сложные. Двойные латуни состоят из меди и цинка (Л90 — латунь, 90 % Си, остальное — цинк). Введение цинка в сплав повышает свойства латуней и снижает стоимость сплава по сравнению с медью. В сложные латуни вводят легирующие элементы для улучшения обрабатываемости резанием, повышения коррозионной стойкости, прочности и твердости: марганец, олово, никель повышают прочность и коррозионную стойкость латуней, свинец улучшает обрабатываемость, кремний увеличивает твердость и прочность.

Технические латуни содержат до 39—45 % цинка. Латуни, содержащие до 39 % цинка, относятся к однофазным и представляют собой твердый раствор цинка в меди Си (Zn). Они называются а -латунями. Их можно обрабатывать давлением в горячем и холодном состояниях. Латуни, содержащие цинка 39—45 %, — двухфазные. В сплаве наряду с a-фазой появляется [3-фаза. При высокой температуре [3-фаза пластична, с понижением температуры пластичность теряется и латунь становится твердой и хрупкой. Поэтому двухфазные латуни обрабатывают давлением только в горячем состоянии. Двухфазные латуни по сравнению с однофазными имеют большую прочность и износостойкость, но меньшую пластичность.

Бронзы (ГОСТ 493-79, 613-79) — это сплавы меди с оловом, свинцом, алюминием, кремнием и другими элементами. Цинк может входить в состав бронзы в качестве легирующего элемента. В зависимости от состава бронзы делятся на оловянные и без- оловянные.

Оловянные бронзы — это сплавы меди с оловом, которые легируют цинком, свинцом, никелем, фосфором и другими элементами. Цинк снижает стоимость бронзы и улучшает ее технологические свойства, свинец повышает плотность отливок, облегчает обработку резанием и улучшает антифрикционные свойства, никель увеличивает прочность и износостойкость, фосфор повышает жидкотекучесть, упругие и антифрикционные свойства. Оловянные бронзы обладают высокой химической стойкостью, хорошими литейными и антифрикционными свойствами. На практике применяют оловянные бронзы с содержанием 10—12 % Sn. Бронзы с более высоким содержанием олова хрупкие. Бронзы с содержанием олова 4—5 % являются однофазными и хорошо деформируются в холодном состоянии. Бронзы с содержанием олова более 5 % — двухфазные обладают хорошими антифрикционными свойствами.

Безоловянные бронзы — это сплавы меди с алюминием, никелем, кремнием, свинцом и другими элементами.

Алюминиевые бронзы — это сплавы меди с алюминием (5— 10 % А1). Алюминиевые бронзы (БрА5, БрА7) обладают высокой стойкостью против коррозии, имеют высокие механические и технологические свойства. Бронзы, содержащие 7—8 % алюминия, обрабатываются давлением в холодном и горячем состояниях. Бронзы с содержанием алюминия 8—10 % обрабатываются давлением только в горячем состоянии. В качестве легирующих элементов в алюминиевые бронзы вводят железо и никель. Железо измельчает зерно и повышает механические и антифрикционные свойства бронз, никель улучшает износостойкость (БрАЖН 10-4-4).

Кремнистые бронзы — это сплавы меди с кремнием (БрКМцЗ-1). Эти бронзы хорошо обрабатываются давлением, резанием, имеют высокие механические свойства, обладают упругостью и коррозионной стойкостью. Их применяют для изготовления пружин и пружинящих деталей приборов и радиооборудования, работающих при повышенных температурах (до 250 °С), в агрессивных средах.

Бериллиевые бронзы — это сплавы меди с бериллием (2— 2,5 % Be). Бериллиевые бронзы упрочняются термической обработкой. Эти бронзы обладают высокой прочностью и упругостью, стойкостью против коррозии, хорошо обрабатываются резанием и свариваются. При ударе бериллиевой бронзы о другой металл не возникают искры, поэтому из нее делают инструмент для взрывоопасных работ.

Свинцовые бронзы — сплавы меди со свинцом. Свинцовые бронзы обладают высокими антифрикционными свойствами, хорошо отводят теплоту, возникающую при трении. Для улучшения свойств свинцовые бронзы легируют никелем, оловом и другими элементами. Свинцовые бронзы, легированные никелем и оловом, имеют высокие механические свойства и используются для изготовления втулок и вкладышей подшипников без стальной основы.

Бронзы и латуни подразделяются на деформируемые и литейные. В состав литейных латуней и бронз вводят специальные легирующие элементы, улучшающие их литейные свойства: увеличивающие жидкотекучесть, уменьшающие усадку. Однако эти добавки снижают пластичность литейных медных сплавов по сравнению с деформируемыми.

Для обозначения медных сплавов используют начальные буквы их названия (Л — латунь, Бр — бронза), затем следуют начальные буквы основных элементов, образующих сплав, и цифры, указывающие количество легирующего элемента в процентах.

Легированные элементы, входящие в состав сплава, обозначаются следующими буквами: Мц — марганец, О — олово, Ц — цинк, Ж — железо, Ф — фосфор, Б — бериллий, X — хром, С — свинец, К — кремний, Н — никель.

Порядок цифр в марках деформируемых и литейных латуней и бронз различен. В марках деформируемых латуней и бронз среднее содержание компонентов сплава в процентах ставится после букв, обозначающих легирующие элементы, входящие в состав сплава.

Например, ЛЖМц59-1-1 —деформируемая латунь, содержащая 59 % Си, 1 % Fe, 1 % Мп, остальное до 100 % — цинк; БрОФ 6,5- 0,15 — деформируемая бронза, содержащая 6,5 % Sn, 0,15 % Р, остальное до 100 % — медь.

В марках литейных медных сплавов содержание компонента в процентах ставится сразу после буквы, обозначающей его название.

Например, ЛЦ40Мц1,5 — литейная латунь, содержащая 40 % Zn и 1,5 % Мп, остальное до 100 % — медь; БрА10ЖЗМц2 — литейная бронза, содержащая 10 % А1, 3 % Fe и 2 % Мп, остальное до 100 % — медь.

Учебные материалы

Медь относится к группе цветных металлов, наиболее широко применяемых в промышленности. Порядковый номер меди в периодической системе Д. И. Менделеева — 29, атомный вес А = 63,57. Медь имеет гранецентрированную кубическую решетку (ГЦК) с периодом а = 3,607 Å.

Удельный вес меди g = 8,94 г/см 3 , температура плавления — 1083 0 С. Чистая медь обладает высокой тепло — и электропроводностью. Удельное электрическое сопротивление меди 0,0175 мкОм×м, теплопроводность l = 395 Вт/(м×град). Предел прочности sв = 200…250 МПа, твердость 85…115 НВ, относительное удлинение d = 50 %, относительное сужение y = 75 %.

Медь — немагнитный металл. Она обладает хорошей технологичностью: обрабатывается давлением, резанием, легко полируется, хорошо паяется и сваривается, имеет высокую коррозионную стойкость. Основная область применения — электротехническая промышленность.

Электропроводность меди существенно понижается при наличии даже очень небольшого количества примесей. Поэтому в качестве проводникового материала применяют в основном особо чистую медь М00 (99,99 %), электролитическую медь М0 (99,95 %), М1 (99,9 %). Марки технической меди М2 (99,7 %), М3 (99,5 %), М4 (99,0 %).

В зависимости от механических свойств различают медь твердую, нагартованную (МТ) и медь мягкую, отожженную (ММ).

Вредными примесями в меди являются висмут, свинец, сера и кислород. Действие висмута и свинца аналогично действию серы в стали; они образуют с медью легкоплавкие эвтектики, располагающиеся по границам зерен, что приводит к разрушению меди при ее обработке давлением в горячем состоянии (температура плавления эвтектики соответственно 270 0 С и 326 0 С).

Сера и кислород снижают пластичность меди за счет образования хрупких химических соединений Сu2O и Сu2S.

В качестве конструкционного материала технически чистую медь применяют редко, так как она имеет низкие прочностные свойства, твердость. Основными конструкционными материалами на основе меди являются сплавы латуни и бронзы. Для маркировки медных сплавов используют следующее буквенное обозначение легирующих элементов:

  • О — олово; Ц — цинк; Х — хром;
  • Ж — железо; Н — никель; С — свинец;
  • К — кремний; А — алюминий; Ф — фосфор;
  • Мц — марганец; Мг – магний; Б – бериллий.

Латуни

Латуни — это медные сплавы, в которых основным легирующим элементом является цинк.

В зависимости от содержания цинка латуни промышленного применения бывают:

  1. однофазные a — латуни, содержащие до 39 % цинка (это предельная растворимость цинка в меди);
  2. двухфазные (a+b|)- латуни, содержащие до 46 % цинка;
  3. однофазные b|- латуни ,содержащие до 50 % цинка.

Однофазные a- латуни пластичны, хорошо обрабатываются резанием, давлением при температурах ниже 300 0 С и выше 700 0 С (в интервале от 300 0 С до 700 0 С — зона хрупкости). С увеличением содержания цинка прочность латуней повышается. В латунях b|- фаза представляет собой упорядоченный твердый раствор на базе электронного соединения СuZn с решеткой ОЦК, она хрупкая и прочная. Поэтому, чем больше в латунях b|- фазы, тем они прочнее и менее пластичны. Практическое применение имеют латуни с содержанием цинка до 42…43 %.

Латуни, обрабатываемые давлением, маркируются буквой Л (латунь), после которой ставятся буквенные обозначения легирующих элементов; цифры, следующие за буквами, указывают содержание меди и количество соответствующего легирующего элемента в процентах. Содержание цинка определяется по разности от 100 %. Например, латунь Л62 содержит 62 % Сu и 38 % Zn. Литейные латуни маркируются буквой Л, после которой ставится содержание цинка и других легирующих элементов в процентах. Количество меди определяется по разности от 100 %. Например, латунь ЛЦ36Мц20С2 содержит 36 % Zn, 20 % Mn, 2 % Pb и 42 % Сu.

Читайте также  Ручная лебедка для Нивы какую выбрать?

К однофазным a — латуням относятся Л96 (томпак), Л80 (полутомпак), Л68, имеющая наибольшую пластичность (d = 56 %). Двухфазные (a+b|) — латуни марок Л59 и Л60 имеют меньшую пластичность в холодном состоянии, но большую прочность и износостойкость. Однофазные имеют после отжига sв = 250…350 МПа и d = (50…56) %, двухфазные — sв = 400…450 МПа и d = (35… 40 %).

Для повышения механических свойств и коррозионной стойкости латуни могут легироваться оловом, алюминием, марганцем, кремнием, никелем, железом и др.

Введение легирующих элементов (кроме никеля) уменьшает растворимость цинка в меди и способствует образованию b|- фазы, поэтому такие латуни чаще двухфазные (a+b|). Никель увеличивает растворимость цинка в меди, и при достаточном его содержании латунь из двухфазной становится однофазной. Свинец облегчает обрабатываемость резанием и улучшает антифрикционные свойства. Сопротивление коррозии повышают Al, Zn, Si, Mn, Ni, Sn.

В морском судостроении применяются оловянистые ”морские” латуни, например, ЛО70-1 (70 % Сu, 1 % Sn, 29 % Zn). Она используется для изготовления конденсаторных трубок, деталей теплотехнической аппаратуры.

Алюминиевые латуни используют для изготовления конденсаторных трубок, цистерн, втулок, а также для изготовления коррозионно-стойких деталей, работающих в морской воде. Марки латуней: ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2 (в электрических машинах, в хим. машиностроении). Из латуни ЛАНКМц75-2-2,5-0,5-0,5 изготовляют цельнотянутые круглые трубы для производства манометрических трубок и пружин в приборах повышенного класса точности. С помощью закалки и старения sв достигает 700 МПа.

Марганцевые латуни кроме хороших механических и технологических свойств (обрабатываются давлением в холодном и горячем состоянии) обладают высокой коррозионной стойкостью в морской воде, хлоридах и перегретом паре. Латуни ЛМц 58-2 и ЛМцА 57-3-1 применяются в основном для изготовления крепежных изделий арматуры.

Кремнистые латуни характеризуются высокой прочностью (sв до 640 МПа), пластичностью и вязкостью до минус 183 0 С. Латунь ЛК80-3 применяют для изготовления арматуры, деталей приборов в судо- и общем машиностроении.

Свинцовистые латуни отлично обрабатываются резанием и обладают высокими антифрикционными свойствами. Латуни ЛС60-1, ЛС59-1 применяют для изготовления крепежных деталей , зубчатых колес, втулок.

Никелевая латунь обладает повышенными механическими (sв до 785 МПа) и коррозионными свойствами, обрабатывается давлением в холодном и горячем состоянии. Латунь ЛН65-5 применяется для изготовления манометрических и конденсаторных трубок, различного вида проката.

Литейные латуни содержат те же элементы, что и латуни, обрабатываемые давлением; от последних литейные отличает, как правило, большее легирование цинком и другими металлами. Вследствие этого они обладают хорошими литейными характеристиками.

Бронзы

Бронзы — это сплавы меди с оловом, алюминием, кремнием и другими элементами.

По технологическому признаку бронзы делятся на деформируемые и литейные. Деформируемые маркируются буквами Бр, после которых перечисляются легирующие элементы, а затем соответственно содержание этих элементов в процентах. Содержание меди определяется по разности от 100 %. Например, БрОЦС 8-4-3 содержит 8 % Sn, 4 % Zn, 3 % Pb, 85 % Сu.

Литейные бронзы маркируются аналогично литейным латуням. Например, бронза Бр06Ц3Н6 содержит 6 % Sn, 3 % Zn, 6 % Pb, 85 % Сu.

Бронзы по сравнению с латунью обладают лучшими механическими, антифрикционными свойствами и коррозионной стойкостью.

Оловянные бронзы. Наибольшее практическое значение имеют сплавы, содержащие до 10…12 % Sn. Предельная растворимость олова в меди 15,8%, однако в реальных условиях кристаллизации и охлаждения предельная растворимость снижается примерно до 6 %. К однофазным сплавам относятся бронзы с содержанием олова до 5…6 % и a — фаза, представляет твердый раствор олова в меди с ГЦК — решеткой. При большем содержании олова наряду с a — раствором присутствует эвтектоид (a + Сu31Sn8). Предел прочности бронзы возрастает с увеличением олова, но при его высоких концентрациях резко снижается из-за большего количества хрупкого интерметаллида Сu31Sn8.

Оловянные бронзы обычно легируют Zn, Pb, Ni, P. Цинк улучшает технологические свойства бронзы и удешевляет ее. Фосфор улучшает литейные свойства. Для изготовления художественного литья содержание фосфора может достигать 1 %. Свинец (до 3…5 %) вводится в бронзу для улучшения ее обрабатываемости резанием. Никель повышает механические свойства, коррозионную стойкость и плотность отливок, уменьшает ликвацию. Среди медных сплавов оловянные бронзы имеют самую низкую линейную усадку (0,8 % при литье в землю и 1,4 % — в металлическую форму).

Для проведения пластичности проводится гомогенизация сплавов при температурах 700…750 0 С с с быстрым охлаждением. Остаточные напряжения снимаются отжигом при 550 0 С.

Оловянные деформируемые бронзы Бр0Ф7-0.2, БрОЦС4-4-4, БрОЦ4-3 и другие имеют более высокую прочность, упругость, сопротивление усталости, чем литейные. Их используют для изготовления подшипников скольжения, шестерен, трубок контрольно — измерительных и других приборов, манометрических пружин и т.д.

Литейные оловянные бронзы. По сравнению с деформируемыми они содержат большее количество легирующих элементов, имеют ниже жидкотекучесть, малую линейную усадку, склонны к образованию усадочной пористости. Бронзы БрОЗЦ7С5Н, БрО10Ф1, БрО6Ц6С3, БрО5С25 и другие применяются для изготовления арматуры, работающей в воде и водяном паре, подшипников, шестерен, втулок.

Алюминиевые бронзы отличаются высокими механическими антикоррозионными свойствами, жидкотекучестью, малой склонностью к дендритной ликвации. Из-за большой усадки трудно получить сложную фасонную отливку. Они морозостойки, немагнитны, не дают искры при ударах. По коррозионной стойкости превосходят латуни и оловянистые бронзы.

Алюминий растворяется в меди, образуя a — твердый раствор замещения с пределом растворимости 9,4 %. При большем содержании в структуре появляется эвтектоид (a + g|); g| — интерметаллид Сu32Al9.

Однофазные бронзы БрА5, БрА7 имеют хорошую пластичность и относятся к деформируемым. Обладают наилучшим сочетанием прочности и пластичности: sв = 400…450 МПа, d = 60 %.

Двухфазные бронзы (a + g|) имеют повышенную прочность до 600 МПа, но пластичность заметно ниже d = (35…45) %. Эти сплавы упрочняются термообработкой и дополнительно легируются Fe, Ni, Mn.

Железо измельчает зерно и повышает механические и антифрикционные свойства алюминиевых бронз. Никель улучшает механические свойства и износостойкость, температуру рекристаллизации и коррозионную стойкость. Марганец повышает технологические и коррозионные свойства.

Бронзы БрАЖН10-4-4, БрАЖМц10-3-1-5 и др. применяются для изготовления зубчатых колес, деталей турбин, седел клапанов и других деталей, работающих в тяжелых условиях износа при повышенных температурах до 400 0 С, корпуса насосов, клапанные коробки и др.

Закалка проводится с температуры 950 0 С, после чего бронзы подвергают старению при 250…300 0 С в течение 2…3 ч.

Кремнистые бронзы применяются в качестве заменителей оловянистых бронз. До 3 % кремний растворяется в меди, и образуется однофазный a-твердый раствор. При большем содержании кремния появляется твердая и хрупкая g-фаза. Никель и марганец улучшает механические и коррозионные свойства. Они не теряют пластичности при низких температурах, хорошо паяются, обрабатываются давлением, немагнитны и не дают искры при ударах. Их используют для деталей, работающих до 500 0 С, а также в агрессивных средах (пресная, морская вода).

Бронзы БрКН1-3, БрКМц3-1 применяют для изготовления пружин, антифрикционных деталей, испарителей и др.

Бериллиевые бронзы. Содержат 2…2,5 % Ве. Эти сплавы упрочняются термической обработкой. Предельная растворимость бериллия в меди при 866 0 С составляет 2,7 %, при 600 0 С — 1,5 %, а при 300 0 С всего 0,2 %. Закалка проводится при 760…800 0 С в воде и старение при 300 0 С в течение 3 ч. Сплав упрочняется за счет выделения дисперсных частиц g-фазы СuBe, что приводит к резкому повышению прочности до 1250 МПа при d = 3…5 %. Бронзы БрБ2, БрБНТ1,9 и БрБНТ1,7 имеют высокую прочность, упругость, коррозионную стойкость, жаропрочность, немагнитны, искробезопасны (искра не образуется при размыкании электрических контактов). Применяются для изготовления мембран, пружин, электрических контактов.

Свинцовые бронзы. Свинец практически не растворяется в жидкой меди. Поэтому сплавы после затвердевания состоят из кристаллов меди и включений свинца. Такая структура обеспечивает высокие антифрикционные свойства. Бронза БрС30 применяется для изготовления вкладышей подшипников скольжения, работающих при повышенных давлениях и с большими скоростями. По сравнению с оловянистыми бронзами, теплопроводность ее в 4 раза больше, поэтому она хорошо отводит теплоту, возникающую при трении. Прочность этих бронз невысокая sв = 60 МПа, d = 4 %.

Сплавы на медной основе

Медные сплавы имеют высокие механические и технологические свойства, хорошо сопротивляются коррозии и износу. Сплавы на медной основе разделяют в зависимости от состава на две основные группы: латуни и бронзы.

Латуни – это сплавы меди с цинком, где содержание цинка не превышает 45 %. Они маркируются буквой “Л” – латунь и цифрами, указывающими содержание меди в процентах, остальное цинк (Л90, Л62 и т.д.)

Все латуни по технологическому признаку подразделяются на две группы:

а) деформируемые латуни (основной способ производства обработка давлением), из которых приготовляют ленты, проволоку, трубы, листы, прутки и т.д.

б) литейные латуни (основной способ производства изделий – литьё, чаще фасонное литьё), они обладают хорошей жидкотекучестью, антифрикционными свойствами, малой склонностью к ликвации. Эти латуни имеют более высокие механические свойства и применяют их для изготовления подшипников, втулок, вкладышей, гаек, нажимных винтов, червячных колёс, пароводяной аппаратуры и т.д.

Латуни с содержанием цинка до 39 % хорошо деформируются в холодном состоянии. При содержании цинка от 39 % до 45 % латуни малопластичны в холодном состоянии, поэтому подвергаются горячей обработку давлением. Они имеют более высокую прочность и износостойкость.

По химическому составу латуни подразделяются на двойные (простые сплавы – только с Zn), называемые томпак, и специальные (многокомпонентные).

Специальные многокомпонентные латуни – это двухфазные латуни с добавками легирующих элементов, например, Sb (олово) повышает прочность, увеличивает коррозионную стойкость; Pb (свинец) улучшает обрабатываемость резанием; Al (алюминий) повышает механические свойства; Ni (никель) повышает прочность и коррозионную стойкость; Si (кремний) повышает твёрдость, улучшает износостойкость; Fe (железо) улучшает жидкотекучесть. По технологическому признаку многокомпонентные латуни также подразделяются на литейные и деформируемые. Легирующие элементы повышают прочность, но уменьшают пластичность. При маркировке специальных латуней после буквы “Л” – латунь стоят первые русские буквы каждого легирующего элемента и цифры, указывающие количество входящих легирующих добавок в процентах. Например, ЛАЖ60-1-1 – латунь, содержащая 60 % меди, 1 % алюминия, 1 % железа, остальное цинк; ЛКС80-3-3 – 80 % меди, около 3 % кремния, 3 % свинца, остальное цинк.

Читайте также  Как правильно сварить регистр отопления из труб?

Бронзы— это сплавы меди с другими различными элементами: оловом, свинцом, алюминием, кремнием, бериллием и др. Как легирующая добавка в бронзы может включаться и цинк в небольших количествах.

Маркируются бронзы буквами “Бр” (бронза), затем указываются буквенные обозначения легирующих элементов, входящих в сплав, а за ними по порядку цифры, показывающие содержание этих элементов в процентах, остальное медь. Например, БрОФ10-1 бронза оловянная (олова — 10 %, фосфора — 1%, остальное медь); БрАЖМц10-3-1 бронза алюминиевая (алюминия — 10%, железа — 3%, марганца — 1 %, остальное медь).

В технике широко применяются бронзы. Различают деформируемые и литейные оловянистые бронзы (при содержании олова менее 5-6 %). Деформируемые оловянистые бронзы изготовляют в виде лент, листов, прутков, трубок, путём прессования и штамповки. Литейные оловянистые бронзы применяют для изготовления антифрикционных деталей, пароводяной арматуры, вкладышей подшипников. Оловянистые (оловянные) бронзы характеризуются высокими антифрикционными свойствами, хорошей жидкотекучестью, низкой литейной усадкой.

В оловянистые бронзы для улучшения обрабатываемости резанием добавляют свинец, для повышения механических и литейных свойств – цинк и фосфор, для повышения коррозионной стойкости – никель.

Специальные (безоловянистые) бронзы также находят широкое применение, так как имеют высокие механические и технологические свойства, коррозионную стойкость.

Безоловянистые бронзы – это сплавы меди с марганцем, алюминием, никелем, свинцом, бериллием и другими элементами. Они также могут быть двойными и сложнолегированными, используются для получения деталей давлением или литьём.

Марганцовистые бронзы отличаются высокими коррозионными свойствами, высокой пластичностью, хорошо обрабатываются давлением, сохраняют механические свойства при повышенных температурах, например БрМц5 – до температуры 400-450 0 С.

Алюминиевые бронзы – двойные (БрА5 и БрА7) и сложнолегированные (добавки Ni, Mn, Fe и др.) обладают повышенной коррозионной стойкостью и имеют высокие механические и технологические свойства.

Свинцовистые бронзы (БрС30, БрОС10-10, БрОСН10-2-3) являются литейными сплавами, они применяются как антифрикционный материал для высоконагруженных подшипников, работающих в условиях больших удельных давлений.

Кремнистые бронзы (БрКМц3-1) с содержанием кремния до 3 % отличаются высокой пластичностью и хорошими литейными свойствами, упругостью и коррозионной стойкостью. Эти бронзы легко обрабатываются резанием, давлением, свариваются. Применяют для изготовления пружин и других упругих деталей, работающих при повышенных температурах (до 250 0 С), в агрессивных средах.

Бериллиевые бронзы (БрБ2, БрБНТ2-1-1) относятся к деформируемым сплавам, имеют высокие прочностные свойства, высокую упругость, сопротивляемость коррозии, свариваются и обрабатываются резанием. Применяют как материала для упругих элементов (пружин, мембран, торсионов), работающих в коррозионных средах, а также для деталей, работающих на износ (кулачки полуавтоматов и др.).

Названия и свойства сплавов на основе меди

В настоящее время открыто и используется более 400 медьсодержащих сплавов, каждый из которых обладает уникальным сочетанием свойств, соответствующих конкретным областям применения, высоким требованиям к качеству, оптимальным производственным процессам и условиям окружающей среды.

  • Первые сплавы
  • Общие свойства сплавов на основе меди
  • Сплавы меди с другими химическими элементами
  • Способы получения
  • Области применения

Первые сплавы

Открытие меди, а также сплавов, содержащих этот металл, произошло после случайного (а потом – и намеренного) нагрева сульфидных руд до температуры более 8000С. Этот процесс оказался доступным человечеству ещё с 4000-3000 гг. до н.э., тогда и были получены сплавы меди.

Поскольку извлечение меди из медных руд происходило с неизбежным включением в состав конечного продукта также и попутных химических элементов – кремния, олова, железа, то фактически речь шла о получении бронзы. Бронза – исторически первый сплав меди. Достоверно известно, что бронза уже была известна в древнем Иране и на Балканах. Так родилась металлургия Бронзового века человечества.

Значительно позже была открыта латунь. Впервые латунь (позже названную за тусклый жёлтый блеск «поддельным золотом») получили римляне в эпоху правления императора Октавиана Августа (начало нашей эры). Для этого медь сплавили с рудой, содержащей большой процент цинка.

В последующем металлургия медных сплавов постоянно совершенствовалась: уменьшалось количество посторонних примесей, увеличивалась точность состава сплавов, содержащих медь, росла их номенклатура.

Общие свойства сплавов на основе меди

Характеристики медных сплавов всегда адаптировали соответственно конкретным промышленным применениям и высокотехнологичным продуктам. Это достигается с помощью процесса легирования, когда в основной компонент сплава – медь – вводят два или несколько различных металлов. Комбинируя медь с другими металлами, можно изготавливать целый ряд медных сплавов для решения любых задач, стоящих перед техникой и обществом.

Общими свойствами рассматриваемых соединений являются:

  1. Высокая электропроводность.
  2. Высокая теплоёмкость.
  3. Легкость образования прочных химических соединений.
  4. Достаточная химическая инертность при работе во влажных или химически агрессивных средах.
  5. Привлекательный товарный вид.

Использование медных сплавов вместо чистой меди снижает стоимость готовых изделий и уменьшает напряжённость в сфере потребления данной продукции, поскольку ресурсы меди в значительной мере уже разведаны и интенсивно вырабатываются. Отметим также, что металлургия медных сплавов отличается повышенным уровнем токсичности производственных процессов.

Сплавы меди с другими химическими элементами

Особенностями химического состава и структуры таких сплавов являются:

  1. Высокие пластические характеристики, повышающиеся при увеличении процентного содержания меди. Это позволяет использовать данные сплавы в технологических процессах обработки давлением, которые характеризуются высокими значениями интенсивности деформации. К таким технологиям относятся холодное выдавливание, прессование, волочение, глубокая вытяжка.
  2. Отличная теплопроводность, вследствие чего электротехнические изделия, изготовленные из большинства марок медных сплавов, не нагреваются даже при пропускании через них токов большой мощности.
  3. Отличная электропроводность, что находит своё отражение в снижении поперечного сечения токопроводящих профилей при той же нагрузке (в сравнении, например, с алюминиевыми или стальными).
  4. Хорошая коррозионная стойкость и стойкость от биообрастания. Это находит применение в изготовлении из таких сплавов подводной части морских судов.
  5. Нечувствительность к температурным колебаниям: даже при криогенных температурах медные сплавы полностью сохраняют свои механические и электрические свойства.

Все медные сплавы немагнитны. Некоторые из них имеют особые названия. Так, сплав меди называется нейзильбером, если он дополнительно содержит хром, и мельхиором, если там есть ещё и марганец.

Бронза

Все разновидности бронз выделяются тем, что основным легирующим элементом в них не является никель или цинк. Согласно современной классификации к бронзе относят также сплавы, которые содержат алюминий, кремний, свинец и (в незначительном количестве) ряд других металлов.

Бронзы – как литые, так и деформируемые — можно разделить на четыре группы. К кованым бронзовым сплавам относят:

  1. Сплавы системы «медь-олово-фосфор» или фосфорную бронзу.
  2. Сплавы системы «медь-олово-свинец-фосфор» или свинцовые фосфорные бронзы.
  3. Медно-алюминиевые сплавы (или алюминиевые бронзы).
  4. Медно-кремниевые сплавы (кремниевые бронзы).

Все сплавы данного семейства хорошо обрабатываются давлением в нагретом состоянии или при комнатной температуре.

Литые бронзовые сплавы включают в себя:

  1. Медно-оловянные бронзы.
  2. Сплавы системы «медь-олово-свинец « (сплавы, которые содержат повышенный процент свинца).
  3. Медно-оловянно-никелевые бронзы, имеющие в своём химическом составе значительное количество никеля (не на уровне металлургической примеси.
  4. Медно-алюминиевые сплавы, часто именуемые алюминиевыми бронзами.

Физические характеристики бронз практически не зависят от химсостава этих сплавов.

Среди прочих бронз выделим медно-бериллиевые сплавы. Они считаются самыми твердыми и прочными, хорошо поддаются механической и термической обработке. В результате бериллиевые бронзы по механическим свойствам практически аналогичны многим высокопрочным легированным сталям, сохраняя при этом высокую коррозионную стойкость.

Медно-никелевые сплавы

Характерная особенность этих сплавов — превосходная устойчивость к морской коррозии. Кроме того, добавление никеля к меди улучшает прочность и коррозионную стойкость, при этом хорошая пластичность сохраняется.

При добавлении к основным компонентам – меди и никелю – также цинка и серебра такие сплавы (иногда называемые специальными латунями), улучшают свою внешнюю привлекательность и часто используются в декоративных применениях.

Латунь

Наименование «латунь» принято для обширного класса медно-цинковых сплавов, которые характеризуются высокими показателями прочности, обрабатываемости, пластичности , износостойкости, твёрдости. Все латуни выделяются характерным соломенно-жёлтым цветом, имеют высокие показатели электро- и теплопроводности. Они обладают высокой стойкостью к коррозии.

Способы получения

Практическое применение нашли два процесса – электролиз и гидрометаллургия. Электролитическим способом сплав, содержащий медь, получают следующим образом. Исходным материалом является чистая катодная медь, свойства которой зависят от ряда переменных — концентрации серной кислоты и сульфата меди, типа и количества легирующих добавок, температуры электролита, плотности тока и частоты очистки электродов. После осаждения конечный продукт промывают, удаляя все следы электролита. Далее происходит отжиг полуфабриката в восстановительной атмосфере, после чего порошок спекают и прессуют в требуемые формы (иногда после прессования продукт подвергают прокатке). Процесс характеризуется высокой однородностью готовых изделий по показателям плотности и прочности..

Исходным сырьём для гидрометаллургического процесса получения медных сплавов может служить первичная или вторичная медь (медный лом). Основной металл выщелачивается серной кислотой или аммиачными растворами, насыщенный раствор отделяют от остатка фильтрацией. Медь осаждают из раствора водородным восстановлением под давлением. Во время восстановления 90…95% сплава осаждается в виде порошка, который далее перекачивается в центрифугу, где и происходит отделение. Влажный медный порошок сушат в восстановительной атмосфере и измельчают, добавляя требуемые легирующие элементы. Дальнейшие операции производят в той же последовательности, что и в предыдущем варианте.

Читайте также  Как выбрать напильник для заточки цепи бензопилы?

Области применения

Медные сплавы играют ключевую роль в удовлетворении современных социальных потребностей – при производстве возобновляемых источников энергии, в здравоохранении, изготовлении высокоэффективных энергетических устройств, а также в сфере коммуникаций. Вот некоторые примеры:

При изготовлении систем вентиляции, отопления и кондиционирования медные сплавы способствуют снижению трудоёмкости изготовления и сборки кондиционеров, снижению их веса, уменьшению размеров, повышению КПД работы приборов, снижению расхода хладагента.

В строительстве и архитектуре медные сплавы улучшают внешний вид и выразительность зданий, повышают их устойчивость от наводнений и подтоплений. Использование медных сплавов отвечает важным требованиям современного дизайна зданий, которые требуют применения перерабатываемых и экологически чистых материалов, что обеспечивает эффективную защиту окружающей среды.

В электроэнергетике медные сплавы применяются, начиная от технологии производства высоковольтных проводов и микросхем до мощных генераторов и компьютеров. Возрастает их роль в вопросах оптимального распределения и генерации энергии, в том числе, и из возобновляемых источников.

Эффективность использования сплавов на основе меди увеличивается при внедрении процессов вторичной переработки некондиционных устройств, которые содержат в своей конструкции детали из данных материалов.

Медь – свойства меди, сплавы и применение

3) Медь и ее сплавы. Классификация и маркировка медных сплавов.

Медь-металл розовато-красного цвета, плотность её 8,95г/см3, температура плавления1083С, кристаллизуется в гранецентрированной решётке и не имеет полиморфных превращений. На воздухе при наличии влаги углекислого газа медь медленно окисляется, покрываясь зелёной плёнкой так называемой патины (щелочной карбонат меди). Эта плёнка в определённой мере защищает медь от дальнейшего окисления. Медь принято считать эталоном электропроводности теплопроводности по сравнению другими металлами. Медь легко обрабатывается давлением, плохо резанием, имеет невысокие литейные свойства, плохо сваривается, но легко подвергается пайке. Применяется в виде листов, прутков проволоки. Механические свойства меди существенно зависят от её состояния.
Маркировка:

«МТ» – твердая медь, «ММ» – мягкая медь.Маркируется медь буквой М и цифрами, зависящими от содержания примесей. Медь марок М00 (0,01% примесей),М0 (0,05%примесей), М1(0,1%примесей) используется для изготовления проводников электрического тока, медь М2 (0,3%примесей) – для производства высококачественных сплавов меди,М3 (0,5%примесей)- для сплавов обыкновенного качества.

– двойные многокомпонентные медные сплавы с основным легирующим элементом – цинком. По сравнению с медью обладает более высокой прочностью и коррозионной стойкостью. Простые латуни обозначают буквой Л и цифрой, показывающей содержание меди в процентах. В специальных латунях после буквы Л пишут заглавную букву дополнительных легирующих элементов (А – алюминий, Б – бериллий, Ж – железо, К – кремний, Мц – марганец, Н – никель, О – олово, С – свинец, Ц – цинк, Ф. – фосфор) и через тире после содержания меди указывают содержание легирующих элементов в процентах. Латуни разделяют на литейные и деформируемые. Латуни, за исключением свинцовосодержащих, легко поддаются обработке давлением в холодном и горячем состоянии. Все латуни хорошо паяются твердыми и мягкими припоями.

называют медные сплавы, в которых основными легирующими элементами являются различные металлы, кроме цинка. Маркируют бронзы буквами Бр, за которыми следуют заглавные буквы легирующих элементов, а через тире цифры, показывающие их процентное содержание.По сравнению с латунью бронзы обладают более высокой прочностью, коррозионной стойкостью и антифракционными свойствами. Они весьма стойки на воздухе, в морской воде, растворах большинства органических кислот, углекислых растворах.Большинство бронз (за исключением алюминиевых) хорошо поддаются сварке и пайке твердыми и мягкими припоями.

Цинковый сплав в бижутерии – стоит ли приобретать

Внешний вид цинковых сплавов напоминает золото и серебро, что делает такие соединения популярными при изготовлении различной бижутерии. Особенностью сплава является простота эксплуатации, не требующая больших временных затрат – литье и последующая обработка занимает минимум времени, позволяя получить украшение с презентабельным видом.

Безвредность таких изделий дает возможность использовать бижутерию всем – они не вызывают аллергических реакций и не раздражают кожу. Если хотите выглядеть эффектно, но при этом потратить небольшую сумму – бижутерия их цинкового сплава станет оптимальным вариантом. В большинстве случаев применяется латунь или соединение с алюминием.

Заказать изготовление цинковых сплавов в Москве по выгодной цене можно в нашей компании. Предоставляем гарантию соответствия установленным ГОСТам и требованиям – вся наша продукция имеет подтверждающие сертификаты. При вопросах относительно данной услуги менеджер предоставит ответы и поможет с оформлением заявки. Приобрести сплавы цинка возможно в любом количестве – предлагаем оптовую и розничную продажу (имеем собственную металлобазу). Доставка продукции выполняется по МО и другим областям в ранее оговоренные сроки. В процессе оформления заказа принимаем к сведению пожелания клиента – одно из правил нашей компании.

БРОНЗА

Бронзой называется сплав меди с алюминием, кремнием, оловом, бериллием и другими элементами, кроме цинка. Бронзы бывают алюминиевыми, кремниевыми, оловянными, бериллиевыми и т.д. – в зависимости от легирующего элемента.

Маркировка бронзы представляет собой определенную последовательность, начинающуюся с буквосочетания «Бр», после которого указываются легирующие элементы. Легирующие элементы перечисляются, начиная с элемента, который находится в максимальном процентном содержании относительно остальных.

Все бронзы подразделяются на оловянные и безоловянные

Оловянные бронзы применяются в химической промышленности и в качестве антифрикционных материалов благодаря высоким антикоррозийным и антифрикционным свойствам.

Легирующие элементы оловянных бронз – фосфор, цинк, никель. Цинк, входящий в состав оловянных бронз в количестве до 10%, служит для того, чтобы стоимость бронз стала меньше. Фосфор и свинец способствуют повышению антифрикционных свойств бронзы и улучшают их обрабатываемость резанием.

Литейные оловянные бронзы применяются:

· Деформированные бронзы – БрОФ6,5-0,4; БрОЦ4-3; БрОЦС4-4-2,5 – используются в качестве пружин, антифрикционных деталей, мембран

· Литейные бронзы – БрО3Ц12С5, БрО3Ц12С5, БрО4Ц4С17 – используются в антифрикционных деталях, арматуре общего назначения

Как влияют примеси на характеристики цинка

Применяют цинк для создания сплавов только в очищенном виде, т.к. наличие различных примесей в нем обеспечивают ухудшение материала (сплава). Соединения изначального цинка с определенными элементами, т.е. его неочищенная форма, приводит к следующим дефектам:

  • Наличие олова – материал получается хрупким и обладает повышенной ломкостью.
  • Кадмий – уменьшает пластичность.
  • Свинец – способствует ускоренной межкристальной коррозии. Делает сплав более подверженным воздействию кислот (растворению).
  • Железо – повышается прочность, но уменьшается пластичность.
  • Мышьяк – хрупкость и отсутствие эластичности.

Избавление от данных примесей исключает вышеописанные дефекты, что позволяет получать сплавы с отличными эксплуатационными характеристиками.

ЛАТУНЬ

Сплав меди с цинком, процентное содержание цинка в котором составляет от 5 до 45%, называется латунью. Латунь, в состав которой входит 2-20% цинка, называется томпак или красная латунь. Если содержание цинка равно 20-36%, то такая латунь называется жёлтой. Латуни, с более чем 45% цинка в своём составе, применяются крайне редко.

· Простые (двухкомпонентные) – сплавы которые состоят из цинка и меди с незначительными примесями других элементов;

· Специальные (многокомпонентные) латуни в своём составе помимо меди и цинка включают ряд других легирующих элементов.

Двухкомпонентные латуни обозначаются заглавной буквой «Л», за которой следует двузначная цифра, определяющая среднее значение процентного содержания меди в сплаве (Л80-латунь, в состав которой входит 80% меди и 20% цинка).

Классификация простых латуней приведена в таблице:

История появления и применения

Латунь известна с начала новой эры и впервые была получена в Римской империи, но также применялась в Индии и Китае. Позже в Европе был утерян способ выплавки цинка, потому долгое время металл завозился с Азии. Добыча цинка в Европе возобновилась с 16 века, а выплавка латуни — с 19 века. Благодаря археологическим раскопкам известно, что латунь широко использовалась для изготовления ювелирных изделий, поскольку она имеет характерный жёлтый цвет золота и носит название «поддельное золото». С развитием металлургии сплав расширил свою сферу применения, что было обеспечено регулированием характеристик металла разнообразным соотношением его компонентов.

Медь и сплавы на ее основе, маркировка, свойства и область применения

– металл красно-розового цвета с температурой плавления 1083 о С; имеет плотность 8,94 г/см 3 ; очень хорошо проводит электрический ток и тепло, уступая только серебру. Медь легко деформируется и паяется; но плохо сваривается и обрабатывается резанием, дает большую усадку при литье.

Промышленность выпускает медь в виде листов, фольги, труб, прутков и проволоки для электротехнической, радиоэлектронной и др. отраслей промышленности. В зависимости от химического состава установлены следующие марки меди: М00, М0, М1, М2, М3, М4 с содержанием Cu

от 99,99 до 99,0 %, соответственно.

Для повышения эксплуатационных свойств медь легируют различными элементами, для обозначения которых применяют следующие буквы: А – алюминий, Б – бериллий, Ж – железо, К – кремний, Мц – марганец, Н – никель, О – олово, С – свинец, Ф – фосфор, Х – хром, Ц – цинк и т.д.

По технологии получения заготовок медные сплавы традиционно делят на деформируемые

и
литейные
, а по химическому составу – на латуни и бронзы:

– сплав на основе меди и цинка, но в нее могут входить и другие элементы;