Что такое предел текучести стали?

Предел текучести стали

Разные материалы по-разному реагируют на приложенную к ним внешнюю силу, вызывающую изменение их формы и линейных размеров. Такое изменение называют пластической деформация. Если тело после прекращения воздействия самостоятельно восстанавливает первоначальную форму и линейные размеры — такая деформация называется упругой. Упругость, вязкость, прочность и твердость являются основными механическими характеристиками твердых и аморфных тел и обуславливают изменения, происходящие с физическим телом при деформации под действием внешнего усилия и ее предельном случае — разрушении. Предел текучести материала — это значение напряжения (или силы на единицу площади сечения), при котором начинается пластическая деформация.

Текучесть металла

Знание механических свойств материала чрезвычайно важно для конструктора, который использует их в своей работе. Он определяет максимальную нагрузку на ту или иную деталь или конструкцию в целом, при превышении которой начнется пластическая деформация, и конструкция потеряет с вою прочность, форму и может быть разрушена. Разрушение или серьезная деформация строительных конструкций или элементов транспортных систем может привести к масштабным разрушениям, материальным потерям и даже к человеческим жертвам.

Предел текучести — это максимальная нагрузка, которую можно приложить к конструкции без ее деформации и последующего разрушения. Чем выше его значения, тем большие нагрузки конструкция сможет выдержать.

На практике предел текучести металла определяет работоспособность самого материала и изделий, изготовленных из него, под предельными нагрузками. Люди всегда прогнозировали предельные нагрузки, которые могут выдержать возводимые ими строения или создаваемые механизмы. На ранних этапах развития индустрии это определялось опытным путем, и лишь в XIX веке было положено начало созданию теории сопротивления материалов. Вопрос надежности решался созданием многократного запаса по прочности, что вело к утяжелению и удорожанию конструкций. Сегодня необязательно создавать макет изделия определенного масштаба или в натуральную величину и проводить на нем опыты по разрушению под нагрузкой — компьютерные программы семейства CAE (инженерных расчетов) могут с точностью рассчитать прочностные параметры готового изделия и предсказать предельные значения нагрузок.

Величина предела текучести материала

С развитием атомной физики в XX веке появилась возможность рассчитать значение параметра теоретическим путем. Эту работы первым проделал Яков Френкель в 1924 году. Исходя из прочности межатомных связей, он путем сложных для того времени вычислений определил величину напряжения, достаточного для начала пластической деформации тел простой формы. Величина предела текучести материала будет равна

ττ=G/2π. , где G — модуль сдвига, как раз и определяющий устойчивость связей между атомами.

Расчет величины предела текучести

Гениальное допущение, сделанное Френкелем при расчетах, заключалось в том, что процесс изменения формы материала рассматривался как приводимый в действие напряжениями сдвига. Для начала пластической деформации полагалось достаточным, чтобы одна половина тела сдвинулась относительно другой до такой степени, чтобы не смогла вернуться в начальное положение под действием сил упругости.

График физического предела текучести

Френкель предположил, что испытываемый в мысленном эксперименте материал имеет кристаллическое или поликристаллическое строение, свойственно для большей части металлов, керамики и многих полимеров. Такое строение предполагает наличие пространственной решетки, в узлах которой в строго определенном порядке расположены атомы. Конфигурация этой решетки строго индивидуальны для каждого вещества, индивидуальны и межатомные расстояния и связывающие эти атомы силы. Таким образом, чтобы вызвать пластическую деформацию сдвига, потребуется разорвать все межатомные связи, проходящие через условную плоскость, разделяющую половины тела.

При некотором значении напряжения, равному пределу текучести, связи между атомами из разных половин тела разорвутся, и рады атомов сместятся друг относительно друга на одно межатомное расстояние без возможности вернуться в исходное положение. При продолжении воздействия такой микросдвиг будет продолжаться, пока все атомы одной половины тела не потеряют контакт с атомами другой половины

В макромире это вызовет пластическую деформацию, изменит форму тела и при продолжении воздействия приведет к его разрушению. На практике линия начала разрушений проходит не посередине физического тела, а находится в местах расположения неоднородностей материала.

Физический предел текучести

В теории прочности для каждого материала существует несколько значений этой важной характеристики. Физический предел текучести соответствует значению напряжения, при котором, не смотря на деформацию, удельная нагрузка не меняется вовсе или меняется несущественно. Иными словами, это значение напряжения, при котором физическое тело деформируется, «течет», без увеличения прилагаемого к образцу усилия

Условный предел текучести

Большое число металлов и сплавов при испытаниях на разрыв демонстрируют диаграмму текучести с отсутствующей или слабо выраженной «площадкой текучести». Для таких материалов говорят о условном пределе текучести. Его трактуют как напряжение, при котором происходит деформация в переделах 0,2%.

Условный предел текучести

К таким материалам относятся легированные и высокоуглеродистые стальные сплавы, бронза, дюралюминий и многие другие. Чем более пластичным является материал, тем выше для него показатель остаточных деформаций. Примером пластичных материалов могут служить медь, латунь, чистый алюминий и большинство низкоуглеродистых стальных сплавов.

Предел текучести стали

Сталь, как самый популярный массовый конструкционный материал, находится под особо пристальным вниманием специалистов по расчету прочности конструкций и предельно допустимых нагрузок на них.

Стальные сооружения в ходе их эксплуатации подвергаются большим по величине и сложным по форме комбинированным нагрузкам на растяжение, сжатие, изгиб и сдвиг. Нагрузки могут быть динамическими, статическими и периодическими. Несмотря на сложнейшие условия использования, конструктор должен обеспечить у проектируемых им конструкций и механизмов долговечность, безотказность и высокую степень безопасности как для персонала, таки для окружающего населения.

Предел текучести стали

Поэтому к стали и предъявляются повышенные требования по механическим свойствам. С точки зрения экономической эффективности, предприятие стремится снизить сечение и другие размеры производимой им продукции, чтобы снизить материалоемкость и вес и повысить, таким образом, эксплуатационные характеристики. На практике это требование должно быть сбалансировано с требования ми по безопасности и надежности, зафиксированными в стандартах и технических условиях.

Предел текучести для стали является ключевым параметрам в этих расчетах, поскольку он характеризует способность конструкции выдерживать напряжения без необратимых деформаций и разрушения.

Влияние содержание углерода на свойства сталей

Согласно физико-химическому принципу аддитивности, изменение физических свойств материалов определяется процентным содержанием углерода. Повышение его доли до 1,2% дает возможности увеличить прочность, твердость, предел текучести и пороговую хладоемкость сплава. Дальнейшее повышение доли углерода приводит к заметному снижению таких технических показателей, как способность к свариваемости и предельная деформация при штамповочных работах. Стали с низким содержанием углерода демонстрируют наилучшую свариваемость.

Азот и кислород в сплаве

Эти неметаллы из начала таблицы Менделеева являются вредными примесями и снижают механические и физические характеристики стали, такие, например, как порог вязкости, пластичность и хрупкость. Если кислород содержится в количестве свыше 0,03%- это ведет к ускорению старения сплава, а азот увеличивает ломкость материала. С другой стороны, содержание азота повышает прочность, снижая предел текучести.

Микроструктура сплава, в составе которого присутствуют азот и кислород

Добавки марганца и кремния

Легирующая добавка в виде марганца применяется для раскисления сплава и компенсации отрицательного влияния вредных серосодержащих примесей. Ввиду своей близости по свойствам к железу существенного самостоятельного влияния на свойства сплава марганец не оказывает. Типовое содержание марганца – около 0,8%.

Кремний оказывает похожее воздействие, его добавляют в процессе раскисления в объемной доле, не превышающей 0,4%. Поскольку кремний существенно ухудшает такой технический показатель, как свариваемость стали. Для конструкционных сталей, предназначенных для соединения сваркой, его доля не должна превышать 0,25%. На свойства стальных сплавов кремний влияния не оказывает.

Примеси серы и фосфора

Сера является исключительно вредной примесью и отрицательно воздействует на многие физические свойства и технические характеристики.

Предельно допустимое содержание этого элемента в виде хрупких сульфитов– 0,06%

Сера ухудшает пластичность, предел текучести, ударную вязкость, износостойкость и коррозионную стойкость материалов.

Фосфор оказывает двоякое воздействие на физико-механические свойства сталей. С одной стороны, с повышением его содержания повышается предел текучести, однако с другой стороны, одновременно понижаются вязкость и текучесть. Обычно содержание фосфора находится в пределах от 0,025 до 0,044%. Особенно сильное отрицательное влияние фосфор оказывает при одновременном повышении объемных долей углерода.

Легирующие добавки в составе сплавов

Легирующими добавками называют вещества, намеренно введенные в состав сплав для целенаправленного изменения его свойств до нужных показателей. Такие сплавы называют легированными сталями. Лучших показателей можно добиться, добавляя одновременно несколько присадок в определенных пропорциях.

Влияние легирующих элементов на свойства стали

Распространенными присадками являются никель, ванадий, хром, молибден и другие. С помощью легирующих присадок улучшают значение предела текучести, прочности, вязкости, коррозионной стойкости и многих других физико-механических и химических параметров и свойств.

Текучесть расплава металла

Текучестью расплава металла называют его свойство полностью заполнять литейную форму, проникая в малейшие полости и детали рельефа. От этого зависит точность отливки и качество ее поверхности.

Жидкий металл для процессоров

Свойство можно усилить, если поместить расплав под избыточное давление. Это физическое явление используется в установках литья под давлением. Такой метод позволяет существенно повысить производительность процесса литья, улучшить качество поверхности и однородность отливок.

Читайте также  Протяжка на торцовочной пиле что это?

Испытание образца для определения предела текучести

Чтобы провести стандартные испытания, используют цилиндрический образец диаметром 20 мм и высотой 10 мм, закрепляют его в испытательной установке и подвергают растягиванию. Расстояние между нанесенными на боковой поверхности образца метками называют расчетной длиной. В ходе измерений фиксируют зависимость относительного удлинения образца от величины растягивающего усилия.

Зависимость отображают в виде диаграммы условного растяжения. На первом этапе эксперимента рост силы вызывает пропорциональное увеличение длины образца. По достижении предела пропорциональности диаграмма из линейной превращается в криволинейную, теряется линейная зависимость между силой и удлинением. На этом участке диаграммы образец при снятии усилия еще может вернуться к исходным форме и габаритам.

Для большинства материалов значения предела пропорциональности и предела текучести настолько близки, что в практических применениях разницу между ними не учитывают.

Определение предела текучести стали, таблицы

Прокатное производство включает изготовление различных марок конструкционных сталей, каждая из которых обладает индивидуальными механическими характеристиками. В процессе эксплуатации стальные сооружения подвергаются в разной степени нагрузкам на изгиб и сжатие, растяжение и удары и только от механических свойств металлов зависит степень их прочность и стойкость. Чтобы сделать правильные расчеты, применяется специальная расчетная формула.

Виды деформации стали

Тяжелым конструкциям необходимо придать дополнительную прочность и надежность, в связи с чем к свойствам используемых для изготовления металлов предъявляются особые требования.

При расчете размеров конструкции важную роль играет снижение массы сооружения без потери его несущих способностей. Используемые для изготовления металлических сооружений конструкционные металлы должны иметь достаточно высокие показатели прочности и хорошую пластичность.

Сопротивляемость деформации и разрушению под воздействием внешней нагрузки во многом зависит от того, какими свойствами наделен металл. В производстве стали деформация встречается в двух видах: упругой и пластической.

Описываются они разными характеристиками. Сегодня для испытания образцов металлов применяют несколько методик, которые определяют значения пропорциональности, упругости, текучести и других важных характеристик.

Современное определение стали звучит как твердый сплав железа с углеродом, процентным содержанием которого и обусловлены основные свойства стали. Чем выше содержание углерода, тем металл прочнее и тверже, но ниже вязкость и пластичность. Поэтому так важно правильно рассчитать соотношение этих показателей для производства тех или иных изделий из стали. Маркировать стали принято каждую группу по-разному.

Конструкционная углеродистая сталь маркируется буквами Ст и цифровыми обозначениями от 1 до 9, а также двумя буквами в зависимости от способа раскисления металла (ст.3кп):

  1. кп — кипящая;
  2. пс — полуспокойная;
  3. сп — спокойная.

Качественная — цифрами двузначными: 05,08,10,… 45…, что указывает на среднее количество углерода в составе стали.

Предел текучести стали

Граничный предел пропорциональности стали определяет напряжение, при котором действует закон Гука, согласно с которым деформация, возникшая в упругом теле, пропорциональна приложенной к нему силе. Если напряжение меняется, этот закон теряет актуальность.

Немаловажной физической величиной, участвующей в формуле при расчете прочности конструкции, является предел текучести металла. Когда металлом достигается физический предел, даже самое малое поднятие напряжения способно удлинить образец, который начинает как бы течь, откуда и произошло его обозначение. В связи с этим граница текучести стали показывает критическое напряжение, когда материал деформируется уже без увеличения нагрузки.

Единица, в которой производится измерение предела текучести будет называться Паскаль (Па) либо МегаПаскаль (МПа). Преодолевший этот предел образец получает необратимые изменения — разные степени деформации, нарушение структурного строения кристаллической решетки, различные пластические преобразования.

Если при увеличении растягивающего значения силы пройдена площадка текучести, деформация металла усиливается. На диаграмме это представляется в виде горизонтально расположенной прямой, на которой может измеряться напряжение, максимально получаемое после остановки усиления нагрузки. Так называемый предел текучести Ст 3 составляет 2450 кг/кв.см.

Этот показатель отличается у различных марок стали и может меняться от применения разных температурных режимов и типов термообработки. Чтобы иметь возможность точно определить предел текучести стали таблица используется, где в зависимости от марок сталей приведены величины пределов текучести. Как пример, по данным таблицы сталь 20 предел текучести имеет 250 МПа, а сталь 45 — 360.

При проведении испытаний некоторые металлы на диаграмме имеют слабо выраженную площадку тягучести либо она вовсе отсутствует, поэтому к ним применяется условный предел тягучести.

Материалы, на которые распространяется применение условного предела текучести, это в основном представители высокоуглеродистых и легированных сталей, дюралюминий, чугун, бронза и многие другие.

Предел упругости

Весьма важной составляющей механического состояния металлов является предел упругости стали. С его помощью устанавливается предельно допустимый уровень нагрузок при эксплуатации металла, когда им испытываются незначительные деформации в допустимых значениях.

Конструкционные материалы в себе должны сочетать высокие пределы тягучести, при которых они смогут выдерживать серьезные нагрузки, и иметь достаточную упругость, которая обеспечит необходимую жесткость изготовляемой конструкции. Сам модуль упругости обладает одинаковой величиной при растяжении и сжатии, но иметь совершенно отличные пределы упругости — так что одинаково жесткие конструкции диапазоны упругости могут иметь абсолютно разные.

При этом металл в упругом состоянии макропластических деформаций не получает, хотя в его отдельных микроскопических объемах локальные деформации вполне могут иметь место. Благодаря им происходят неупругие явления, серьезно воздействующие на поведение отдельных металлов в состоянии упругости.

При этом нагрузки статические приводят к возникновению гистерезисных явлений, релаксации и упругого последействия, в то время как нагрузки динамические провоцируют появление внутреннего трения.

В процессе релаксации происходит несанкционированное снижение напряжения. Это приводит к проявлению остаточной деформации, когда активная нагрузка уже не действует. При наступлении внутреннего трения происходит потеря энергии. Это вызывает необратимые последствия, которые характеризуются декрементом затухания и коэффициентом внутреннего трения.

Такие металлы активно гасят вибрацию и сдерживают звук, например, серый чугун, или свободно распространяют колебания, как это делает колокольная бронза. С повышением температурного воздействия упругость металлов снижается.

Предел прочности

Предел прочности стали, который возникает после прохождения его границы текучести и позволяет образцу вновь начать сопротивление к растяжению, отображается на графике линией, которая поднимается уже более полого.

Наступает фаза временного сопротивления действующей постоянной нагрузке. При применении максимума напряжения в точке предела прочности возникает участок, где площадь сечения уменьшается, а шейка значительно сужается.

При этом испытываемый образец разрывается в наиболее узком месте, его напряжение снижается и значение величины силы уменьшается. Предел прочности для ст. 3 составляет 4000−5000 кГ/кв.см.

Предел текучести

Если охарактеризовать понятие предела текучести кратко, то в сопротивлении материалов пределом текучести называют напряжение, при котором начинает развиваться пластическая деформация. Предел текучести относится к характеристикам прочности.

Согласно [1], текучесть — это макропластическая деформация с весьма малым упрочнением dτ/dγ.

Физический предел текучести — это механическая характеристика материалов: напряжение, отвечающее нижнему положению площадки текучести в диаграмме растяжения для материалов, имеющих эту площадку (рисунок), σТ=PТ/F. Здесь PТ — это нагрузка предела текучести, а F — это первоначальная площадь поперечного сечения образца.

Предел текучести устанавливает границу между упругой и упруго-пластической зонами деформирования. Даже небольшое увеличение напряжения (нагрузки) выше предела текучести вызывает значительные деформации. [2]

Условный предел текучести

Условный предел текучести (он же технический предел текучести). Для материалов, не имеющих на диаграмме площадки текучести, принимают условный предел текучести — напряжение, при котором остаточная деформация образца достигает определённого значения, установленного техническими условиями (большего, чем это установлено для предела упругости). [2] Под условным пределом текучести обычно подразумевают такое напряжение, при котором остаточная деформация составляет 0,2%. Таким образом обычно условный предел текучести при растяжении обозначается σ0,2.

Выделяют также условный предел текучести при изгибе и условный предел текучести при кручении.

Предел текучести металла

Характеристика, данная выше, справедлива в первую очередь для предела текучести металла. Предел текучести металла измеряется в кг/мм 2 или Н/м 2 . На значение предела текучести металла влияют самые разные факторов, например: толщина образца, режим термообработки, наличие тех или иных примесей и легирующих элементов, микроструктура, тип и дефекты кристаллической решётки и др. Предел текучести металлов сильно меняется с изменением температуры.

Предел текучести стали

Предел текучести сталей в ГОСТах указывается с пометкой «не менее», единица измерения МПа. Приведём в качестве примера регламентируемые значения предела текучести σТ некоторых распространённых сталей.

Для сортового проката базового исполнения (ГОСТ 1050-88, сталь конструкционная углеродистая качественная) диаметром или толщиной до 80 мм справедливы следующие значения предела текучести сталей:

  • Предел текучести стали 20 (Ст20, 20) при T=20°С, прокат, после нормализации — не менее 245 Н/мм 2 или 25 кгс/мм 2 .
  • Предел текучести стали 30 (Ст30, 30) при T=20°С, прокат, после нормализации — не менее 295 Н/мм 2 или 30 кгс/мм 2 .
  • Предел текучести стали 45 (Ст45, 45) при T=20°С, прокат, после нормализации — не менее 355 Н/мм 2 или 36 кгс/мм 2 .

Для этих же сталей, изготавливаемых по согласованию потребителя с изготовителем, ГОСТ 1050-88 предусматривает иные характеристики. В частности, нормированный предел текучести сталей, определяемый на образцах, вырезанных из термически обработанных стальных заготовок указанного в заказе размера, будет иметь следующие значения:

  • Предел текучести стали 30 (Ст30, закалка+отпуск): прокат размером до 16 мм — не менее 400 Н/мм 2 или 41 кгс/мм 2 ; прокат размером от 16 до 40 мм — не менее 355 Н/мм 2 или 36 кгс/мм 2 ; прокат размером от 40 до 100 мм — не менее295 Н/мм 2 или 30 кгс/мм 2 .
  • Предел текучести стали 45 (Ст45, закалка+отпуск): прокат размером до 16 мм — не менее 490 Н/мм 2 или 50 кгс/мм 2 ; прокат размером от 16 до 40 мм — не менее 430 Н/мм 2 или 44 кгс/мм 2 ; прокат размером от 40 до 100 мм — не менее 375 Н/мм 2 или 38 кгс/мм 2 .
Читайте также  Прилипает ли магнит к нержавейке?

*Механические свойства стали 30 распространяются на прокат размером до 63 мм.

Предел текучести стали 40Х (Ст 40Х, сталь конструкционная легированная, хромистая, ГОСТ 4543-71): для проката размером 25 мм после термообработки (закалка+отпуск) — предел текучести стали 40Х не менее 785 Н/мм 2 или 80 кгс/мм 2 .

Предел текучести стали 09Г2С (ГОСТ 5520-79, лист, сталь 09Г2С конструкционная низколегированная для сварных конструкций, кремнемарганцовистая). Минимальное значение предела текучести стали 09Г2С для стального проката в зависимости от толщины листа меняется от 265 Н/мм 2 (27 кгс/мм 2 ) до 345 Н/мм 2 (35 кгс/мм 2 ). Для повышенных температур минимальное требуемое значение предела текучести стали 09Г2С составляет: для Т=250°C — 225 (23); для Т=300°C — 196 (20); Т=350°C — 176 (18); Т=400°C — 157 (16).

Предел текучести стали 3. Сталь 3 (углеродистая сталь обыкновенного качества, ГОСТ 380—2005) изготавливается следующих марок: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп. Предел текучести стали 3 регламентируется отдельно для каждой марки. Так, например, требования к пределу текучести Ст3кп, в зависимости от толщины проката, меняются от 195-235 Н/мм 2 (не менее).

Текучесть расплава

Текучесть расплава металла — это способность расплавленного металла заполнять литейную форму. Текучесть расплава для металлов и металлических сплавов — то же что и жидкотекучесть. (См. Литейные свойства сплавов).

Текучесть жидкости вообще и расплава в частности есть величина, обратная динамической вязкости. В Международной системе единиц (СИ) текучесть жидкости выражается в Па -1 *с -1 .

Подготовлено: Корниенко А.Э. (ИЦМ)

Лит.:

  1. Штремель М.А. Прочность сплавов. Часть II. Деформация: Учебник для вузов. — М.:*МИСИС*, 1997. — 527 с.
  2. Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. — 2-е изд., перераб. и доп. – М.: Высш.шк., 1986. — 199 с.: ил. — (Профтехобразование). — ББК 34.2/ Ж 86/ УДЖ 620.1
  3. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. ISBN 5-217-00241-1
  4. Бобылев А.В. Механические и технологические свойства металлов. Справочник. — М.: Металлургия, 1980. 296 с.
  5. Белянкин Ф.П. Энергетический предел текучести металлов. // Сборник Института строительной механики АН УССР. №9, 1948.152

Конкурс «Я и моя профессия: металловед, технолог литейного производства». Узнать, участвовать >>> —>

Определение предела такого качества стали, как текучесть

Производство проката подразумевает изготовление огромного количества разновидностей конструкционных сталей. Сооружения во время эксплуатации испытывают сложные нагрузки на растяжение, сжатие, удары, изгиб или действующие одновременно и в комплексе. Для тяжелых и сложных условий работы конструкций, механизмов и сооружений требуется обеспечить долговечность, безопасность и надежность работы, в связи с чем к металлу, как к основному конструкционному материалу, предъявляются повышенные требования.

Главным в расчете конструкций является стремление уменьшить сечение стальных конструкций современных узлов для снижения их массы и экономного расходования материала без уменьшения несущей способности сооружения. В зависимости от условий работы, требования к сталям изменяются, но существуют стандартные, которые являются важными и применяются в процессе расчетных работ. Конструкционная сталь должна соответствовать высоким прочностным характеристикам при достаточной пластичности материала.

Предел текучести – немаловажная условная физическая величина, непосредственно используемая в расчетных формулах. Применение этого показателя в качестве основы при расчете конструкции на прочность является обоснованным, так как при эксплуатации в сооружении появляются необратимые изменения линейных размеров, что приводит к разрушению формы изделия и выходу его из строя. Повышение этой характеристики дает возможность уменьшить расчетные сечения материала и вес металлических конструкций и позволяет повысить рабочие нагрузки.

Пределом текучести металлов называют характеристику стали, показывающую критическое напряжение, после которого продолжается деформация материала без повышения нагрузки. Это важный показатель измеряется в Паскалях (Па) или МегаПаскалях (МПа), и позволяют рассчитывать предел допустимых напряжений для пластичных сталей.

После того как материал преодолеет предел текучести, в нем происходят необратимые деформации, изменяется структура кристаллической решетки, происходят пластические изменения. Если растягивающее значение силы увеличивается, то после прохождения площадки текучести продолжают увеличиваться деформации сталей.

Часто понятие текучести сталей называют напряжением, при котором начинается необратимая деформация, не определяя различия с пределом упругости. Но в реальных условиях значение показателя предела текучести превышает предел упругости на величину около 5%.

Общие сведения и характеристики сталей

Сталь относят к ковкому деформируемому сплаву на основе железа с углеродом и добавками других элементов. Выплавляют материал из чугунных смесей с металлическим ломом в мартеновских, электрических и кислородных конверторных печах.

Равновесное состояние в структуре сталей

Сформировавшаяся кристаллическая решетка металла зависит от количества содержащегося в них углерода и определяется по структурной диаграмме в соответствии с процессами в этом сплаве. Например, решетка стали, в которой содержится до 0,06% углерода, имеет зернистую структуру и является ферритом в чистом виде. Прочность таких металлов небольшая, но материал обладает высоким пределом ударной вязкости и текучести. Структуры сталей в состоянии равновесия подразделяются:

  • ферритная;
  • перлитно-ферритная;
  • цементитно-ферритная;
  • цементитно-перлитная;
  • перлитная;

Влияние содержание углерода на свойства сталей

Изменения главных составляющих цементита и феррита определяются свойствами первого по закону аддитивности. Увеличение процентной добавки углерода до 1,2% позволяет повысить прочность, твердость, порог хладоемкости на 20ºС и предел текучести. Повышение содержания углерода изменяет физические свойства материала, что иногда приводит к ухудшению технических характеристик, таких как способность к свариванию, деформации при штамповках. Отличным свариванием в конструкциях обладают низкоуглеродистые сплавы.

Добавки марганца и кремния

Марганец вводят в состав сплава в качестве технологической добавки для увеличения степени раскисления и уменьшения вредного воздействия серных примесей. В сталях он присутствует в виде твердых составляющих в количестве не более 0,8% и не оказывает существенного влияния на свойства металла.

Кремний действует в составе сплава аналогичным образом, добавляется при процессе раскисления в количестве не больше 0,38%. Для возможности соединения деталей сваркой содержание кремния не должно быть больше 0,24%. На свойства сталей кремний в составе сплава не влияет.

Примеси серы и фосфора

Пределом содержания серы в сплаве является порог в 0,06%, она содержится в виде хрупких сульфитов. Повышенное содержание примеси существенно ухудшает механические и физические свойства сталей. Это выражается в уменьшении пластичности, предела текучести, ударной вязкости, сопротивления истиранию и коррозии.

Содержание фосфора также ухудшает качественные показатели металлических сплавов, предел текучести после увеличения фосфора в составе повышается, но снижается вязкость и пластичность. Стандартное содержание примеси в сплаве регламентируется интервалом от 0,025 до 0,044%. Наиболее сильно фосфор ухудшает свойства сталей при одновременном высоком показателе добавок углерода.

Азот и кислород в сплаве

Эти вещества загрязняют сталь неметаллическими примесями и ухудшают ее механические и физические показатели. В частности, это относится к порогу вязкости и выносливости, пластичности и хрупкости. Содержание в сплаве кислорода в размере больше, чем 0,03% вызывает быстрое старение металла, азот увеличивает ломкость и повышает со временем деформационное старение. Содержание азота увеличивает прочность, тем самым понижая предел текучести.

Легирующие добавки в составе сплавов

К легированным относят стали, в которые специально вводятся в определенных сочетаниях элементы для повышения качественных характеристик. Комплексное легирование дает наилучшие результаты. В качестве добавок применяют хром, никель, молибден, вольфрам, ванадий, титан и другие.

Легированием повышают предел текучести и другие технологические свойства, такие как ударная вязкость, сужение и возможность прокаливания, снижение порога деформации и растрескивания.

Испытание сталей

Чтобы полностью изучить свойства материала и определения предела текучести, пластических деформаций и прочности проводят испытание образцов металла до полного разрушения. Испытание проводят при действии нагрузок следующего вида:

  • статической нагрузкой;
  • циклической категории (на выносливость или усталость);
  • растяжение;
  • изгиб;
  • кручение;
  • реже на сочетающиеся нагрузки, например, изгиб и растяжение.

Определение пределов испытательных нагрузок производят в стандартных условиях, с применением специальных машин, которые описаны в правилах Государственных стандартов.

Испытание образца для определения предела текучести

Для этого берут образец цилиндрической формы размером 20 мм, расчетной длиной 10 мм и применяют к нему нагрузку растяжением. Понятие расчетной длины обозначает расстояние между рисками, нанесенными на более длинном образце для возможности захвата. Для проведения испытания определяют зависимость между увеличением растягивающей силы и удлинением испытательного образца.

Все показания испытания автоматически отображаются в виде диаграммы для наглядного сравнения. Ее называют диаграммой условного растяжения или условного напряжения, график зависит от первоначального сечения образца и первоначальной его длины. Вначале увеличение силы приводит к пропорциональному удлинению образца. Такое положение действует до предела пропорциональности.

Читайте также  Как подается масло на цепь бензопилы?

После достижения этого порога график становится криволинейным и обозначает непропорциональное увеличение длины при равномерном повышении нагрузки. Дальше следует определение предела текучести. До тех пор, пока напряжения в образце не превосходят этого показателя, то материал с прекращением нагрузки может вернуться в первоначальное состояние относительно размеров и формы. На практике испытательного процесса разница между этими пределами невелика и не стоит особого внимания.

Предел текучести

Если продолжать увеличивать нагрузку, то наступает такой момент испытания, когда изменение формы и размеров продолжается без увеличения силы. На диаграмме это показывается горизонтальной прямой (площадкой) текучести. Фиксируется максимальное напряжение, при котором увеличивается деформация, после прекращения наращивания нагрузки. Этот показатель называется пределом текучести. Для стали Ст. 3 предел текучести от 2450 кг на квадратный сантиметр.

Условный предел текучести

Многие металлы при испытании дают диаграмму, на которой площадка текучести отсутствует или плохо выражена, для них применяется понятие условного предела текучести. Это понятие определяет напряжение, которое вызывает остаточное изменение или деформацию в пределе 0,2%. Металлами, к которым применяется понятие условного предела текучести, служат легированные и высокоуглеродистые стали, бронза, дюралюминий и другие. Чем пластичнее сталь, тем больше показание остаточных деформаций. К ним относят алюминий, латунь, медь и низкоуглеродистые стали.

Испытания стальных образцов показывает, что текучесть металла вызывает значительные сдвиги кристаллов в решетке, и характеризуется появлением на поверхности линий, направленные к центральной оси цилиндра.

Предел прочности

После изменения на некоторую величину происходит переход образца в новую фазу, когда после преодоления предела текучести, металл снова может сопротивляться растяжению. Это характеризуется упрочнением, и линия диаграммы снова поднимается, хотя повышение происходит в более пологом проявлении. Появляется временное сопротивление постоянной нагрузке.

После достижения максимального напряжения (предела прочности) на образце появляется участок резкого сужения, так называемой шейки, характеризующейся уменьшением площади поперечного сечения, и образец рвется в самом тонком месте. При этом значение напряжения резко падает, уменьшается и величина силы.

Сталь Ст.3 характеризуется пределом прочности 4000–5000 кГ/см2. Для высокопрочных металлов такой показатель достигает предела 17500 кГ/см3 этот.

Пластичность материала

Характеризуется двумя показателями:

  • остаточное относительное удлинение;
  • остаточное сужение при разрыве.

Для определения первого показателя измеряют общую длину растянутого образца после разрыва. Чтобы это сделать, складывают две половинки друг с другом. Измерив длину, высчитывают процентное отношение к первоначальной длине. Прочные сплавы менее подвержены пластичности и показатель относительного удлинения снижается до 63 эта11%.

Вторая характеристика рассчитывается после измерения наиболее узкой части разрыва и высчитывается в процентном отношении к первоначальной площади среза образца.

Хрупкость сталей

Свойством, противоположным пластичности, является показатель хрупкости материала. Хрупкими металлами считают чугун, инструментальную сталь. Деление сталей на хрупкие и пластичные производится условно, так как для определения этого показателя имеет значение условия работы или испытания, скорость повышения нагрузки, температура окружающей среды.

Некоторые материалы в разных условиях ведут себя совсем не как хрупкие. Например, чугун, расположенный так, что зажат со всех сторон, не разрушается даже при больших нагрузках и возникающих внутри напряжениях. Сталь с проточками характеризуется повышенной хрупкостью. Отсюда вывод, что гораздо целесообразнее испытывать не пределы хрупкости, а определять состояние материала, как пластичное или хрупкое.

Испытания сталей для определения физических и технических свойств делаются с целью получить достоверные данные для произведения работ при строительстве и создания конструкций в хозяйстве.

Определение предела текучести стали. Вспомогательные таблицы

Прокатное производство включает изготовление различных марок конструкционных сталей, каждая из которых обладает индивидуальными механическими характеристиками. В процессе эксплуатации стальные сооружения подвергаются в разной степени нагрузкам на изгиб и сжатие, растяжение и удары и только от механических свойств металлов зависит степень их прочность и стойкость. Чтобы сделать правильные расчеты, применяется специальная расчетная формула.

Виды деформации стали

Тяжелым конструкциям необходимо придать дополнительную прочность и надежность, в связи с чем к свойствам используемых для изготовления металлов предъявляются особые требования.

При расчете размеров конструкции важную роль играет снижение массы сооружения без потери его несущих способностей. Используемые для изготовления металлических сооружений конструкционные металлы должны иметь достаточно высокие показатели прочности и хорошую пластичность.

Сопротивляемость деформации и разрушению под воздействием внешней нагрузки во многом зависит от того, какими свойствами наделен металл. В производстве стали деформация встречается в двух видах: упругой и пластической.

Описываются они разными характеристиками. Сегодня для испытания образцов металлов применяют несколько методик, которые определяют значения пропорциональности, упругости, текучести и других важных характеристик.

Современное определение стали звучит как твердый сплав железа с углеродом, процентным содержанием которого и обусловлены основные свойства стали. Чем выше содержание углерода, тем металл прочнее и тверже, но ниже вязкость и пластичность. Поэтому так важно правильно рассчитать соотношение этих показателей для производства тех или иных изделий из стали. Маркировать стали принято каждую группу по-разному.

Конструкционная углеродистая сталь маркируется буквами Ст и цифровыми обозначениями от 1 до 9, а также двумя буквами в зависимости от способа раскисления металла (ст.3кп):

  1. кп — кипящая;
  2. пс — полуспокойная;
  3. сп — спокойная.

Качественная — цифрами двузначными: 05,08,10,… 45…, что указывает на среднее количество углерода в составе стали.

Предел текучести стали

Граничный предел пропорциональности стали определяет напряжение, при котором действует закон Гука, согласно с которым деформация, возникшая в упругом теле, пропорциональна приложенной к нему силе. Если напряжение меняется, этот закон теряет актуальность.

Немаловажной физической величиной, участвующей в формуле при расчете прочности конструкции, является предел текучести металла. Когда металлом достигается физический предел, даже самое малое поднятие напряжения способно удлинить образец, который начинает как бы течь, откуда и произошло его обозначение. В связи с этим граница текучести стали показывает критическое напряжение, когда материал деформируется уже без увеличения нагрузки.

Единица, в которой производится измерение предела текучести будет называться Паскаль (Па) либо МегаПаскаль (МПа). Преодолевший этот предел образец получает необратимые изменения — разные степени деформации, нарушение структурного строения кристаллической решетки, различные пластические преобразования.

Если при увеличении растягивающего значения силы пройдена площадка текучести, деформация металла усиливается. На диаграмме это представляется в виде горизонтально расположенной прямой, на которой может измеряться напряжение, максимально получаемое после остановки усиления нагрузки. Так называемый предел текучести Ст 3 составляет 2450 кг/кв.см.

Этот показатель отличается у различных марок стали и может меняться от применения разных температурных режимов и типов термообработки. Чтобы иметь возможность точно определить предел текучести стали таблица используется, где в зависимости от марок сталей приведены величины пределов текучести. Как пример, по данным таблицы сталь 20 предел текучести имеет 250 МПа, а сталь 45 — 360.

При проведении испытаний некоторые металлы на диаграмме имеют слабо выраженную площадку тягучести либо она вовсе отсутствует, поэтому к ним применяется условный предел тягучести.

Материалы, на которые распространяется применение условного предела текучести, это в основном представители высокоуглеродистых и легированных сталей, дюралюминий, чугун, бронза и многие другие.

Предел упругости

Весьма важной составляющей механического состояния металлов является предел упругости стали. С его помощью устанавливается предельно допустимый уровень нагрузок при эксплуатации металла, когда им испытываются незначительные деформации в допустимых значениях.

Конструкционные материалы в себе должны сочетать высокие пределы тягучести, при которых они смогут выдерживать серьезные нагрузки, и иметь достаточную упругость, которая обеспечит необходимую жесткость изготовляемой конструкции. Сам модуль упругости обладает одинаковой величиной при растяжении и сжатии, но иметь совершенно отличные пределы упругости — так что одинаково жесткие конструкции диапазоны упругости могут иметь абсолютно разные.

При этом металл в упругом состоянии макропластических деформаций не получает, хотя в его отдельных микроскопических объемах локальные деформации вполне могут иметь место. Благодаря им происходят неупругие явления, серьезно воздействующие на поведение отдельных металлов в состоянии упругости.

При этом нагрузки статические приводят к возникновению гистерезисных явлений, релаксации и упругого последействия, в то время как нагрузки динамические провоцируют появление внутреннего трения.

В процессе релаксации происходит несанкционированное снижение напряжения. Это приводит к проявлению остаточной деформации, когда активная нагрузка уже не действует. При наступлении внутреннего трения происходит потеря энергии. Это вызывает необратимые последствия, которые характеризуются декрементом затухания и коэффициентом внутреннего трения.

Такие металлы активно гасят вибрацию и сдерживают звук, например, серый чугун, или свободно распространяют колебания, как это делает колокольная бронза. С повышением температурного воздействия упругость металлов снижается.

Предел прочности

Предел прочности стали, который возникает после прохождения его границы текучести и позволяет образцу вновь начать сопротивление к растяжению, отображается на графике линией, которая поднимается уже более полого.

Наступает фаза временного сопротивления действующей постоянной нагрузке. При применении максимума напряжения в точке предела прочности возникает участок, где площадь сечения уменьшается, а шейка значительно сужается.

При этом испытываемый образец разрывается в наиболее узком месте, его напряжение снижается и значение величины силы уменьшается. Предел прочности для ст. 3 составляет 4000−5000 кГ/кв.см.