Спектрометр своими руками в домашних условиях

Спектрометр своими руками в домашних условиях

В предыдущих статьях я описывал, как тестировал различные светодиоды для растений. Для анализа спектра я использовал дифракционную решетку и школьный спектроскоп на основе призмы взятые у знакомого учителя физики.

Но потребность в таком приборе появляется периодически и спектроскоп, а еще лучше спектрометр хотелось бы иметь под рукой.

Идеальным входом была бы покупка спектрометра, но жаба вежливо покрутила у виска.
Попытка сварганить спектрометр из CDROMа хорошего стабильного результата не дала.
И тогда мой взгляд обратился к ювелирным спектроскопам.

Дешевый сегмент китайского рынка представлен двумя типами спектроскопов — с призмой и чуть более дорогой — с дифракционной решеткой.

Мой выбор — ювелирный спектроскоп с дифракционной решеткой

Раз вещь для ювелиров — то в комплекте шел «кожаный» чехол

Размеры у спектроскопа маленькие

Что в прочем было ясно из описания магазина
Собрано все крепко, так что расчлененки не будет.
Поверим и так, что с одной стороны трубки стоит объектив-линза, с другой дифракционная решетка и защитное стекло.

А внутри красивая радуга. Налюбовавшись ею вволю стал искать, а что бы такое посмотреть на спектре.
К сожалению, по прямому назначению спектроскоп применить не удалось, так как вся моя коллекция брильянтов и драгоценных камней ограничилась обручальным кольцом, совершенно непрозрачным и не дающим никакого спектра. Ну разве что в пламени горелки ))).
Зато ртутная люминисцентная лампа честно дала много красивых полосок. Вволю налюбовавшись различными источниками света озадачился вопросом, что нужно картинку как то зафиксировать и спектр измерить.

Немного DIY

В голове уже давно крутилась картинка насадки на фотоаппарат, а под столом стоял ЧПУ станочек, не прошедший еще последней модернизации, но вполне успешно справляющийся с ПВХ пластиком.

Конструкция получилась не очень красивой. Все таки люфты по X и Y я победил не до конца. Ничего ШВП уже лежат в сборе и ждут, когда опорные линейные рельсы приедут.

А вот функциональность получилось вполне приемлемой, чтобы радуга отобразилась на стареньком Canon, давно лежащем без дела.

Правда тут меня ждало разочарование. Красивая радуга становилась какой то дискретной.

Всему вина — RGB матрица любого фотоаппарата и камеры. Поигравшись с настройками баланса белого цвета и режимами съемки, я смирился с картинкой.
Ведь преломление света не зависит от того, каким цветом фиксировать изображение. Для спектрального анализа подошла бы и черно-белая камера с максимально равномерной чувствительностью по всей ширине измеряемого диапазона.

Методика спектрального анализа.

Путем проб и ошибок нарисовалась такая методика
1. Рисуется картинка шкалы видимого диапазона света (400-720нм), на ней обозначаются основные линии ртути для калибровки.

2. Снимается несколько спектров, обязательно с эталонным ртутным. В серии съемок нужно зафиксировать положение спектроскопа на объективе, чтобы исключить сдвиг спектра из серии снимков по горизонтали.

3. В графическом редакторе шкала подгоняется под ртутный спектр, а все остальные спектры масштабируются без горизонтального сдвига в редакторе. Получается что-то вроде этого

4. Ну а потом все загоняется в программу анализатор Cell Phone Spectrometer из этой статьи

Проверяем методику на зеленом лазере, у которого длина волны известна — 532нм

Погрешность получилась около 1% что при ручной методике подгона ртутных линий и рисования шкалы практически от руки очень даже неплохо.
Попутно узнал, что зеленые лазеры не прямого излучения, как красные или синие, а используют твердотельную диодную накачку (DPSS) с кучей вторичных излучений. Век живи — век учись!

Измерение длины волны красного лазера тоже подтвердило правильность методики

Для интереса померил спектр свечки

и горящего природного газа

Теперь можно мерить спектр светодиодов, например «полный спектр» для растений

Спектрометр готов и работает. Теперь буду готовить с его помощью следующий обзор — сравнение характеристик светодиодов разных производителей, дурят ли нас китайцы и как сделать правильный выбор.

Вкратце, полученным результатом доволен. Может быть имело смысл подключить спектроскоп к веб камере для непрерывного измерения спектра, как в этом проекте

Спектрометр своими руками в домашних условиях

Спектроскоп — это, как известно, прибор, позволяющий выяснить состав вещества по спектру его излучения.

Направив, например, спектроскоп на люминесцентную лампу дневного света, мы увидим в ее спектре ярко-зеленые, яркие сине-фиолетовые линии и более слабые оранжевые. Они говорят о том, что в колбе лампы присутствует ртуть (сине-фиолетовая составляющая), а также некоторые другие элементы.

В тех случаях, когда сами по себе объекты исследования не светятся, их заставляют светиться, нагревая, скажем, в пламени горелки или пропуская через них сильный электрический ток.

Чтобы сделать простой спектроскоп своими руками понадобятся:

  • CD- или DVD-диск;
  • картонная коробка примерно 20x20x20 см (главное, чтобы в ней поместился диск);
  • два лезвия от безопасной бритвы;
  • небольшая картонная трубка;
  • немного целлофановой ленты;
  • алюминиевая фольга;
  • клей.

Спектроскоп состоит из трех основных частей: щелей, сделанных при помощи бритвенных лезвий, дифракционной решетки из компакт-диска и просмотрового устройства, представляющего собой бумажную трубку.

Установите компакт-диск в верхней части окна, прорезанного в коробке, отступив примерно сантиметр от левого края, и поблизости к нижнему окну, как показано на фото (рис. 2). Отметьте с помощью фломастера или карандаша положение центрального отверстия диска. Эта отметка покажет вам, где в дальнейшем будет проходить бумажная трубка. Теперь разместите ее на коробке таким образом, чтобы нижний ее конец оказался над отметкой, которую вы только что нарисовали.

Нарисуйте еще один круг на поле, обозначив окружность бумажной трубки (рис. 3). Сместите ее на 1 — 2 см и очертите вокруг нее еще один круг. Эти круги подскажут вам, где нужно вырезать овальное окно (рис. 4).

Теперь вырежьте это окно острым ножом (рис. 5). Овал позволит поставить бумажную трубку под некоторым углом к поверхности диска.

Следующий шаг — сделайте разрез. Поверните ящик на четверть оборота так, чтобы овал оказался с правой стороны. Используйте диск еще раз, чтобы сделать еще один небольшой круг ближе к левой части ящика.

Щели будут расположены в крайней левой части ящика. Вырежьте небольшой прямоугольник в стенке коробки на высоте, отмеченной кружком, который вы сделали с помощью диска. Прямоугольник должен иметь ширину около 1 см и высоту примерно 4 см.

Осторожно разверните упаковку лезвий от безопасной бритвы и поставьте два лезвия над прямоугольным отверстием так, чтобы их острые края почти соприкасались друг с другом. Закрепите лезвия скотчем (рис. 6,7).

Открыв ящик, разместите в нем диск поблизости к щели. Прикрепите его скотчем к задней стенке коробки так, чтобы его рабочая сторона была обращена кверху (рис. 8).

Закройте коробку, обеспечьте ее светонепроницаемость с помощью черной бумаги или алюминиевой фольги (рис. 9).

Вставьте бумажную трубку (рис. 10). Алюминиевая лента или фольга сделают уплотнение светонепроницаемым. Чтобы убедиться, что угол, под которым в коробку вставлена смотровая труба, подобран правильно, направьте входную щель на источник света.

Читайте также  Как состарить древесину в домашних условиях?

Посмотрите через бумажную трубку и подрегулируйте угол ее наклона, чтобы увидеть полный спектр — от красного до фиолетового (рис. 11). Вот и все, спектроскоп своими руками успешно собран.

Теперь, направьте щели на источник света, например, на обычную лампочку накаливания. Прибор покажет простой спектр, неяркие линии.

Это потому, что свет исходит от горячего тела (вольфрамовая нить в лампочке).

Горячий газ неон в лампе дневного света состоит из нескольких цветов, но они расположены в основном в красных и оранжевых частях спектра.

Красный свет светоизлучающих диодов имеет непрерывный спектр, поскольку в них нет горячего газа (рис. 12).


Зеленый свет светоизлучающих диодов и выглядит зеленым. Однако есть источники, которые излучают в желто-зеленой части спектра, а также дают некоторое количество оранжевых и красных линий (рис. 12).


Свет белого светоизлучающего диода на самом деле имеет примесь голубого и так называемого фосфорического.

Диод работает по аналогии с флуоресцентной лампочкой, где синий свет возбуждает люминофоры, чтобы вызвать белое свечение. Поэтому спектр здесь широк.

Самодельный спектрометр с высоким разрешением

Хорошее разрешение достижимо

В интернете много публикаций о том, как используя DVD-R диск и смартфон можно собрать спектрометр, однако характеристики таких устройств не позволяют проводить точные измерения. Мне же удалось сделать прибор с разрешением 0,3 нм.

Основные характеристики

Спектрометр работает в диапазоне 400-700 нм с разрешением 0,3 нм. Применяются сменные оптические щели шириной 50, 100, 200 и 300 микрон. Дифракционная решетка с шагом 740 нм изготовлена из DVD-R диска. Регистрация спектра выполняется зеркальной фотокамерой Nikon D5100. Прибор выполнен в крепком корпусе, позволяющем сохранять настройки при перемещениях.

Конструкция и изготовление прибора

Дифракционная решетка

Просто красивый спектр свечи на DVD-R диске

Диск был расслоен на две половины и разрезан на части, которые после промывания спиртом были помещены в рамки. Дифракционная решетка готова.

Дифракционная решетка из DVD-R диска

Изготовление сменных оптических щелей

В дюралевой пластине сверлю отверстие диаметром 8 мм. Клеевым пистолетом закрепляю половинку лезвия безопасной бритвы, располагая режущую кромку по центру отверстия. Вставляю в отверстие щуп толщиной 50 мк, плотно прижимаю вторую половину лезвия и приклеиваю ее. Аналогично делаю щели 100 мк, 200 мк и 300 мк. Сменные оптические щели готовы.

Корпус спектрометра

Делаю деревянный корпус. Окрашиваю внутри и снаружи в черный цвет.

Оптика и регистрация спектра — фотоаппарат NIKON D5100

Зеркальная фотокамера NIKON D5100

Примерно на 3000 пикселей матрицы приходится около 300 нм видимого спектра. Т.е. 1 пикселю соответствует 0.1 нм. Для надежной регистрации линии нам нужно два-три пикселя. Расчеты показывают, что для такого разрешения размеры оптической щели должны быть порядка 100 микрон. Было сделано несколько щелей для выбора лучшего варианта экспериментальным путем.

Чтобы получить такое разрешение необходим зеркальный фотоаппарат с хорошим объективом. Смартфон и веб-камера не подходят. Требуется большая апертура и ручные настройки. На данный момент на Авито можно приобрести подходящую камеру по цене от 5 до 10 тысяч рублей.

Настройка и калибровка спектрометра

Калибровка прибора проводилась перед каждой серией экспериментов по известному спектру компактной ртуть содержащей люминесцентной лампы.

Лампа для калибровки

Определение длины волны линий исследуемого спектра возможно без специального программного обеспечения. Ниже спектр лампы с линиями ртути 435,8 нм, 546,0 нм, 577,0 нм и 579,1 нм. Линия 611 это уже Европий.

Спектр лампы с линиями ртути Две линии ртути крупным планом Еще крупнее

Расстояние между линиями 2, 1 нм. Половина ширины линии на кадре не более 0,3 нм, что соответствует примерно 3 пикселям матрицы. Делаем вывод – разрешение прибора 0,3 нм. Что в дальнейшем подтвердится съемкой двойной линии натрия.

Для построения спектральных кривых можно использовать программу сайта Spectral Workbench

Спектр лампы, которую я применял для калибровки

Измерение различных спектров

Были проведены несколько классических экспериментов.

Снят спектр Солнца. Высота 13 градусов над горизонтом. Полдень Спектр от трех лазеров с длинами волн 405 нм, 532 нм и 650 нм Опыты по определению концентраций растворов KMnO4 Спектр пламени газовой горелки

Самый интересный эксперимент, ради которого и был изготовлен спектрометр — измерение спектра пламени костра

На фоне непрерывного спектра была зарегестрированна яркая линия, которую я назвал линией огня.

Обработка результата

Совмещаем спектр калибровочной лампы и исследуемый спектр на одном кадре. Зная расположение известных линий ртути, можно определить искомую длину волны, путем замеров и последующих расчетов.

Слева спектр калибровочной лампы. По центру спектр пламени

Полезные ссылки:

Сайт Spectral Workbench. Используя программы на сайте можно обрабатывать спектры и получать графики интенсивности в зависимости от длины волны.

Информационная система «Электронная структура атомов». Очень удобный русскоязычный ресурс по спектральным данным атомов и ионов.

Спектрометр своими руками за 5 долларов и немного OpenCV

В освоении физики лабораторные эксперименты проясняют понятия гораздо лучше лекций. Но из-за пандемии у автора статьи, переводом которой мы делимся к старту флагманского курса о Data Science, уже больше года не было лабораторных занятий; при этом большинство экспериментов последнего курса физики требуют сложных, дорогих приборов. Но автору бросились в глаза эксперименты со спектроскопом, и он решил из подручных материалов сделать свой, недорогой цифровой спектрометр, а для анализа вывода прибора написал программу на Python.

1. Немного теории спектрографии

Спектрометр — прибор, используемый для измерения свойств света. Это позволяет учёным использовать этот прибор для огромного количества экспериментов, таких как определение материалов, обнаруженных в объектах из повседневной жизни, или определение элементов, обнаруженных на далёких звёздах и планетах.

Основная концепция спектрометра заключается в том, что «неизвестный» луч света подаётся на оптический элемент, разделяющий луч по длинам волн, присутствующих в «неизвестном» луче света. Каждая длина волны отклоняется на разную величину, поэтому, измеряя отклонение, можно определить длины волн в «неизвестном» луче света, что потенциально может дать больше информации об источнике света, даже если он возник на расстоянии миллионов километров.

Спектрометр тогда и сейчас

В прежние времена учёные использовали призмы для разделения луча света на составляющие и поворотный окуляр для измерения углового отклонения длины волны каждой составляющей. Однако совсем недавно призму заменили дифракционной решёткой, которая служит той же цели, что и призма, а окуляр заменили подключённым к компьютеру электронным фоторецепторным блоком.

2. Материалы

Все материалы довольно легко найти, и, возможно, они уже есть у вас дома):

чёрная картографическая бумага;

Без веб-камеры обошёлся дешевле 5 долларов.

3. Расчёт корпуса

Корпус мог быть изготовлен с использованием любого вида коробки, но я решил сделать его с нуля, чтобы он идеально подходил по размеру для моей веб-камеры. Начните с измерения веб-камеры. Сложите коробку в соответствии со следующими измерениями:

длина — от 20 до 25 см;

ширина — на 2 см больше ширины веб-камеры;

высота — на 1 см выше, чем высота веб-камеры.

Читайте также  Пайка медью стали в домашних условиях

Прочертите 6 граней коробки в соответствии с размерами на листе картона, кусочки отрежьте ножом. На задней панели сделайте прорезь, через которую можно пропустить кабель веб-камеры, а на передней панели — прорезь размером 2×1 см посередине на высоте объектива камеры. Приклейте все грани на лист чёрной картографической бумаги, разрежьте бумагу по границам картонных кусочков и склейте. Чтобы избежать путаницы, можно разметить грани карандашом.

4. Сборка корпуса

Возьмите нижнюю грань и две боковые грани и поместите их рядом. Лентой соедините три части вместе, затем, убедившись, что ориентация граней сохраняется, прикрепите переднюю и заднюю грани дополнительной лентой. Верхняя грань прикреплена вдоль одного края, так что мы можем открыть корпус, верхняя грань будет откидной крышкой на случай, если нам потребуется позже что-то изменить. Чтобы свет не проникал через верх, отрежьте ещё несколько кусочков картона, сделав небольшое перекрытие. Загляните в корпус через одну из щелей и убедитесь, что в коробку не проникает свет. Чтобы закрыть зазоры, можно использовать дополнительный слой изоленты или любой другой непрозрачной ленты.

5. Делаем прорезь

Чтобы сделать входную щель, приклейте одно из лезвий вертикально, чтобы закрыть часть щели на передней поверхности. Приклейте второе лезвие бритвы рядом с первым, используя один лист бумаги, чтобы создать тонкий зазор между двумя лезвиями. Приклейте изолентой второе лезвие и ею же закройте все зазоры, чтобы свет не попадал в корпус.

6. Дифракционная решётка из CD-диска

Этот шаг в проекте — самый важный. Дифракционная решётка отвечает за разделение луча света в соответствии с длиной волны. Одним из вариантов было бы просто купить дифракционную решётку. Они обычно доступны в Интернете примерно за 4–5 долларов. Другой вариант — использовать в качестве решётки старый DVD-диск; результат будет схожим с результатом от решётки за 5 долларов. Сначала разрежьте диск ножницами. Углубляясь в диск, вы заметите, что он состоит из двух слоёв, которые начнут отделяться. Полностью отделите их друг от друга и выбросьте слой с серебряным покрытием. Отрежьте четверть от второй половины и выровняйте края, чтобы получился прямоугольник чуть больше ширины объектива.

Крепление решётки на камеру

Затем приклейте этот кусочек на объектив. Обязательно работайте с временным клеем, чтобы на случай, если вы захотите использовать веб-камеру для чего-то другого, дифракционную решётку можно было убрать.

Примечание: один из важных шагов, чтобы соорудить ваш спектрометр, — сделать так, чтобы концентрические канавки вдоль диска были выровнены вертикально, то есть они должны быть параллельны прорези. Если это не так, дифракции не будет.

7. Установка камеры

Как только дифракционная решётка будет прикреплена к веб-камере, пропустите кабель через заднюю прорезь корпуса и поместите веб-камеру в заднюю часть корпуса под углом 30 ° относительно передней поверхности и выровняйте с прорезью спереди. Прежде чем установить веб-камеру на место, подключите её к компьютеру и откройте приложение камеры. Направьте спектрометр на источник света и регулируйте положение веб-камеры до тех пор, пока спектр дифракции не окажется в центре изображения. Теперь можно двусторонней лентой приклеить веб-камеру к нижней грани.

8. Тестирование

Чтобы проверить, правильно ли работает ваш спектрометр, наведите его на источник света и регулируйте высоты источника и спектрометра до тех пор, пока они не выровняются. Подойдёт стопка книг или что-то ещё, а я решил подложить несколько старых рулонов нити 3D-принтера. Подключите веб-камеру к компьютеру и откройте приложение камеры. На изображении должен быть чёткий дифракционный спектр.

9. Работа с ПО спектрометра

Простое представление спектра даёт немного информации, поэтому, чтобы построить график интенсивности света, я разработал программу на Python. Она вычисляет относительное расстояние между «пиками», которое может использоваться в определении длин волн источника света. Чтобы запустить программу, нужно установить Python и несколько библиотек с открытым кодом:

Установив библиотеки, можно клонировать программу анализатора спектра из этого репозитория. Затем запустите программу и вы увидите фид веб-камеры. Наведите камеру на источник света и, чтобы захватить интересующую область, на клавиатуре нажмите кнопку «r». Щёлкните и проведите мышью по спектру и нажмите Enter. Как только выбрана нужная область, нажмите кнопку «s», чтобы захватить кадр и проанализировать интенсивность через визуализацию. Для выхода из программы можно нажать «q».

10. Результаты

Протестировав спектрометр и его ПО, вы можете начинать свои эксперименты. Например, направить свой спектрометр на различные источники света, такие как лампы CFL , неоновые лампы, лампы накаливания или даже изменяющие цвет светодиодные смарт-лампы. Или выйти на улицу, направить спектрометр на ясную часть неба и изучить результаты.

Чтобы измерить длины волн определённого источника света, можно начать с источника света с известной длиной волны, такого как лазер, и определить соотношение между положением пиков и длиной волны.

Есть и другие интересные эксперименты, например, можно определить и измерить содержание натрия в поваренной соли или содержание хлорофилла в оливковом масле. При помощи этого недорогого спектрометра можно проводить разные простые и интересные эксперименты прямо у себя дома. А если вам интересно экспериментировать и с другими видами данных, понимать их, отличать сезонные явления от реальных тенденций и делать корректные выводы, вы можете присмотреться к нашему флагманскому курсу о Data Science, где студенты получают опыт, равный опыту после трёх лет самостоятельного изучения науки о данных. Или, если вам больше по душе программирование, вы можете обратить внимание на курс о Fullstack-разработке на Python.

Узнайте, как прокачаться и в других специальностях или освоить их с нуля:

Спектрометр своими руками за 5 долларов и немного OpenCV

  • Новости 1С-Битрикс
  • Полезные статьи

В освоении физики лабораторные эксперименты проясняют понятия гораздо лучше лекций. Но из-за пандемии у автора статьи, переводом которой мы делимся к старту флагманского курса о Data Science, уже больше года не было лабораторных занятий; при этом большинство экспериментов последнего курса физики требуют сложных, дорогих приборов. Но автору бросились в глаза эксперименты со спектроскопом, и он решил из подручных материалов сделать свой, недорогой цифровой спектрометр, а для анализа вывода прибора написал программу на Python.

1. Немного теории спектрографии

Спектрометр — прибор, используемый для измерения свойств света. Это позволяет учёным использовать этот прибор для огромного количества экспериментов, таких как определение материалов, обнаруженных в объектах из повседневной жизни, или определение элементов, обнаруженных на далёких звёздах и планетах.

Основная концепция спектрометра заключается в том, что «неизвестный» луч света подаётся на оптический элемент, разделяющий луч по длинам волн, присутствующих в «неизвестном» луче света. Каждая длина волны отклоняется на разную величину, поэтому, измеряя отклонение, можно определить длины волн в «неизвестном» луче света, что потенциально может дать больше информации об источнике света, даже если он возник на расстоянии миллионов километров.

Спектрометр тогда и сейчас

В прежние времена учёные использовали призмы для разделения луча света на составляющие и поворотный окуляр для измерения углового отклонения длины волны каждой составляющей. Однако совсем недавно призму заменили дифракционной решёткой, которая служит той же цели, что и призма, а окуляр заменили подключённым к компьютеру электронным фоторецепторным блоком.

Читайте также  Как изготовить искусственный камень в домашних условиях?

2. Материалы

Все материалы довольно легко найти, и, возможно, они уже есть у вас дома):

чёрная картографическая бумага;

Без веб-камеры обошёлся дешевле 5 долларов.

3. Расчёт корпуса

Корпус мог быть изготовлен с использованием любого вида коробки, но я решил сделать его с нуля, чтобы он идеально подходил по размеру для моей веб-камеры. Начните с измерения веб-камеры. Сложите коробку в соответствии со следующими измерениями:

длина — от 20 до 25 см;

ширина — на 2 см больше ширины веб-камеры;

высота — на 1 см выше, чем высота веб-камеры.

Прочертите 6 граней коробки в соответствии с размерами на листе картона, кусочки отрежьте ножом. На задней панели сделайте прорезь, через которую можно пропустить кабель веб-камеры, а на передней панели — прорезь размером 2×1 см посередине на высоте объектива камеры. Приклейте все грани на лист чёрной картографической бумаги, разрежьте бумагу по границам картонных кусочков и склейте. Чтобы избежать путаницы, можно разметить грани карандашом.

4. Сборка корпуса

Возьмите нижнюю грань и две боковые грани и поместите их рядом. Лентой соедините три части вместе, затем, убедившись, что ориентация граней сохраняется, прикрепите переднюю и заднюю грани дополнительной лентой. Верхняя грань прикреплена вдоль одного края, так что мы можем открыть корпус, верхняя грань будет откидной крышкой на случай, если нам потребуется позже что-то изменить. Чтобы свет не проникал через верх, отрежьте ещё несколько кусочков картона, сделав небольшое перекрытие. Загляните в корпус через одну из щелей и убедитесь, что в коробку не проникает свет. Чтобы закрыть зазоры, можно использовать дополнительный слой изоленты или любой другой непрозрачной ленты.

5. Делаем прорезь

Чтобы сделать входную щель, приклейте одно из лезвий вертикально, чтобы закрыть часть щели на передней поверхности. Приклейте второе лезвие бритвы рядом с первым, используя один лист бумаги, чтобы создать тонкий зазор между двумя лезвиями. Приклейте изолентой второе лезвие и ею же закройте все зазоры, чтобы свет не попадал в корпус.

6. Дифракционная решётка из CD-диска

Этот шаг в проекте — самый важный. Дифракционная решётка отвечает за разделение луча света в соответствии с длиной волны. Одним из вариантов было бы просто купить дифракционную решётку. Они обычно доступны в Интернете примерно за 4–5 долларов. Другой вариант — использовать в качестве решётки старый DVD-диск; результат будет схожим с результатом от решётки за 5 долларов. Сначала разрежьте диск ножницами. Углубляясь в диск, вы заметите, что он состоит из двух слоёв, которые начнут отделяться. Полностью отделите их друг от друга и выбросьте слой с серебряным покрытием. Отрежьте четверть от второй половины и выровняйте края, чтобы получился прямоугольник чуть больше ширины объектива.

Крепление решётки на камеру

Затем приклейте этот кусочек на объектив. Обязательно работайте с временным клеем, чтобы на случай, если вы захотите использовать веб-камеру для чего-то другого, дифракционную решётку можно было убрать.

Примечание: один из важных шагов, чтобы соорудить ваш спектрометр, — сделать так, чтобы концентрические канавки вдоль диска были выровнены вертикально, то есть они должны быть параллельны прорези. Если это не так, дифракции не будет.

7. Установка камеры

Как только дифракционная решётка будет прикреплена к веб-камере, пропустите кабель через заднюю прорезь корпуса и поместите веб-камеру в заднюю часть корпуса под углом 30 ° относительно передней поверхности и выровняйте с прорезью спереди. Прежде чем установить веб-камеру на место, подключите её к компьютеру и откройте приложение камеры. Направьте спектрометр на источник света и регулируйте положение веб-камеры до тех пор, пока спектр дифракции не окажется в центре изображения. Теперь можно двусторонней лентой приклеить веб-камеру к нижней грани.

8. Тестирование

Чтобы проверить, правильно ли работает ваш спектрометр, наведите его на источник света и регулируйте высоты источника и спектрометра до тех пор, пока они не выровняются. Подойдёт стопка книг или что-то ещё, а я решил подложить несколько старых рулонов нити 3D-принтера. Подключите веб-камеру к компьютеру и откройте приложение камеры. На изображении должен быть чёткий дифракционный спектр.

9. Работа с ПО спектрометра

Простое представление спектра даёт немного информации, поэтому, чтобы построить график интенсивности света, я разработал программу на Python. Она вычисляет относительное расстояние между «пиками», которое может использоваться в определении длин волн источника света. Чтобы запустить программу, нужно установить Python и несколько библиотек с открытым кодом:

Установив библиотеки, можно клонировать программу анализатора спектра из этого репозитория. Затем запустите программу и вы увидите фид веб-камеры. Наведите камеру на источник света и, чтобы захватить интересующую область, на клавиатуре нажмите кнопку «r». Щёлкните и проведите мышью по спектру и нажмите Enter. Как только выбрана нужная область, нажмите кнопку «s», чтобы захватить кадр и проанализировать интенсивность через визуализацию. Для выхода из программы можно нажать «q».

10. Результаты

Протестировав спектрометр и его ПО, вы можете начинать свои эксперименты. Например, направить свой спектрометр на различные источники света, такие как лампы CFL , неоновые лампы, лампы накаливания или даже изменяющие цвет светодиодные смарт-лампы. Или выйти на улицу, направить спектрометр на ясную часть неба и изучить результаты.

Чтобы измерить длины волн определённого источника света, можно начать с источника света с известной длиной волны, такого как лазер, и определить соотношение между положением пиков и длиной волны.

Есть и другие интересные эксперименты, например, можно определить и измерить содержание натрия в поваренной соли или содержание хлорофилла в оливковом масле. При помощи этого недорогого спектрометра можно проводить разные простые и интересные эксперименты прямо у себя дома. А если вам интересно экспериментировать и с другими видами данных, понимать их, отличать сезонные явления от реальных тенденций и делать корректные выводы, вы можете присмотреться к нашему флагманскому курсу о Data Science, где студенты получают опыт, равный опыту после трёх лет самостоятельного изучения науки о данных. Или, если вам больше по душе программирование, вы можете обратить внимание на курс о Fullstack-разработке на Python.

Узнайте, как прокачаться и в других специальностях или освоить их с нуля:

Профессия Data Scientist

Профессия Data Analyst

Курс по Data Engineering

Другие профессии и курсы

ПРОФЕССИИ

Профессия Fullstack-разработчик на Python

Профессия QA-инженер на JAVA

Профессия Этичный хакер

Профессия C++ разработчик

Профессия Разработчик игр на Unity

Профессия iOS-разработчик с нуля

Профессия Android-разработчик с нуля

КУРСЫ

Курс по Machine Learning

Курс «Machine Learning и Deep Learning»

Курс «Математика для Data Science»

Курс «Математика и Machine Learning для Data Science»