Карбонитрация стали в домашних условиях

Карбонитрирование стали

Карбонитрирование стали – особый способ химико-термической обработки стальных деталей, который предусматривает улучшение свойств прочности, стойкости к усталости металла и устойчивости к коррозии. Суть такой обработки заключаться в усилении верхних слоев стали путем насыщения ее азотом и углеродом. Процесс насыщения происходит путем диффузного обмена, в процессе окунания металлов в расплав солей.

Технология карбонитрации стали

Карбонитрация может проводиться деталями любых размеров, из любых сплавов стали и чугуна. Причем возможно подвергать обработке только отдельные участки детали, повышение твердости которых необходимо. Для этого процесса применяется состав солей, в основе которых лежат меламин и дицианидиамид. Соли расплавляются при температуре свыше 550 градусов. Длительность выдержки обрабатываемых деталей может значительно разниться. Для небольших предметов, в основном режущего инструмента, достаточно получаса вдержки. Большие предметы могут обрабатываться более 4 часов. Расчет времени проводится на основе размеров предмета, требуемых конечных характеристик и необходимый толщины карбонизированного слоя.

Технология не слишком сложная, главное соблюдать требуемый диапазон рабочих температур и учитывать марку стали обрабатываемых деталей.

Стоит отметить, что с помощью такой химико-термической обработки можно полностью заменить процессы закалки, хромирования, цементации и гальванизации.

Она помогает добиться повышенных характеристик прочности стали, устойчивости к коррозии и воздействию высоких нагрузок.

В конце обработки на поверхности стали образуется несколько слоев. Первый слой – карбонидный, защищающий сердцевину. С каждым новым слоем концентрация азота и углерода в составе стали уменьшается.

Традиционная технология выглядит следующим образом:

  • предмету придается конечная форма и требуемые геометрические параметры, после чего он направляется на обработку (если требуется полировка, размеры детали можно немного увеличить);
  • проводится первичная обработка, в которую входит очистка от загрязнений, окисления и обезжиривается поверхность;
  • нагрев и опускание в соленую смесь;
  • после карбонитрации сталь охлаждается (можно применять различные методы, используя воду, масло, или оставляя на воздухе);
  • конечная очистка, промывка и просушка.

Эта технология становиться все более популярной из-за ряда преимуществ, выделяющих ее среди аналогов. К ним можно отнести:

  1. Качество верхнего слоя. Карбонитридная структура значительно превышает характеристики нитридных, так как она более пластичная и не такая хрупкая.
  2. Экологичность. Данный процесс наиболее экологически чистый среди аналогов, так как в процессе производства практически не выделяются испарения.
  3. Равномерность. В расплавленных солях металл равномерно прогревается, из-за чего диффузные процессы более качественные.
  4. Отсутствие деформации. Температуры расплавленных солей недостаточно для того, чтобы на поверхности предмета образовалось напряжение и произошла деформация. Изначальные и конечные геометрические параметры детали не отличаются.
  5. Повышение стойкость. Обработанные предметы становятся более стойкими к нагрузкам, воздействию коррозии и становятся более долговечными. Каждый из этих параметров может превышать первоначальные более чем на 70%.
  6. Пластичность покрытия. Готовое покрытие становится менее хрупким, что особо важно в процессе эксплуатации готовых деталей, особенно режущих кромок. При этом снижается коэффициент трения, что также значительно увеличивает срок эксплуатации.
  7. С помощью карбонитрации сталь даже низких марок, пример, стали 20 марки, которые не отличаются прочностными характеристиками, можно улучшать, приближая их свойства к параметрам дорогих марок стали, которые сложнее обрабатывать. Это позволяет экономить не только на покупке сырья, но и на процессе обработки.
  8. Обработанные детали не требуют дополнительной обработки. После выполнения карбонитрации, деталь или предмет можно полноценно эксплуатировать. В некоторых случаях требуется поверхностная обработка, которая не влияет на физические свойства.

Из-за безопасности и простоты технологии, ее можно выполнять даже в домашних условиях, но проще воспользоваться услугами, которые предоставляют некоторые предприятия и небольшие мастерские. Особенно если требуется разовая обработка, так как нецелесообразно устанавливать специальную печь и искать подходящую солевую смесь.

Подобная обработка широко распространена для следующих предметов:

  • режущий инструмент, в том числе ножи, сверла для электроинструмента, фрезы для станков;
  • формы для прессов, предусматривающих воздействие высокого давления;
  • элементы пары трения и зубчатых передач, в том числе шестерни, валы и колеса;
  • детали и элементы насосных установок.

Номенклатура обрабатываемых предметов постоянно растет, очень часто производители для надежности обрабатывают весь спектр производимых деталей, независимо от того, требуется она или нет. Это обусловлено простотой и относительной дешевизной такой процедуры.

Свойства карбонитрированного слоя

Процесс карбонитрации довольно прост, но для успешного завершения обработки стоит строго придерживаться технологии и не пренебрегать ни одним из пунктов. В конечном итоге готовый результат должен иметь следующие свойства:

  1. Толщина карбонидного слоя должна составлять более 0,01 мм и менее 0,6 мм.
  2. Твердость полученного слоя должна соответствовать показателям диапазона 400-1200 HV.
  3. Должна отсутствовать хрупкость обработанного слоя.
  4. Коэффициент трения материала снижается более чем в полтора раза.
  5. Стойкость стали к износу должна увеличиться в два и боле раз.
  6. Усталостная прочность обработанного материала повышается в полтора раза.
  7. Обработанная деталь не должна терять форму, искривляться и коробиться.
  8. Устойчивость к коррозийным процессам повышается более чем в 2 раза.

Если обработанный материал не соответствует хотя бы одному из вышеуказанных свойств, это может свидетельствовать о нарушении технологии выполнения и несоответствии готового результата с первоначальными требованиями.

Например, высокий коэффициент трения негативно влияет на износостойкость деталей, сохранность карбонидного слоя, сохранение геометрических параметров во время эксплуатации и срок эксплуатации.

Применяемое оборудование

Оборудование для карбонитрации представлено на рынке различными моделями, которые отличаются мощностью, степенью автоматизации и количеством выполняемых работ. Для промышленных предприятий лучше всего подходят модульные линии обработки, которые состоят из подготовительного, основного, экологического модулей. Некоторые модели дополняются модулями промывки и охлаждения.

  1. Подготовительный модуль – состоит печи, в которую загружается смесь солей и обрабатываемый материал, в зависимости от требований может компоноваться оборудованием для мойки и обезжиривания деталей. На этом этапе детали подготавливаются к обработке, очищаются и подогреваются.
  2. Основной – состоит из оборудования для карбонитрации. Может дополняться оборудованием в зависимости от типа обрабатываемых предметов. В этом модуле может быть установлена печь двух типов: печь-ванна и электронная, предусматривающие нагрев до 1000 градусов. Установка печи и другого оборудования производиться таким образом, чтобы в случае поломки их можно было оперативно заменить.
  3. Модуль охлаждения и промывки — на этом этапе обработанные детали охлаждаются в подходящей среде, и очистки от следов соли.
  4. Экологический – предусматривает избавление от отходов, фильтруя их и собирая в специальных стоках.

На сегодняшний день можно найти качественное оборудование как импортного, так и отечественного производства, причем большинство производителей предоставляют услуги индивидуального планирования. В процессе разработки проекта учитывается необходимая мощность, количество процессов обработки, размеры и особенности производственного цеха и другие пожелания клиента.

Карбонитрирование стали — технология, свойства, оборудование

Химико-термическая обработка – это комплекс операций по изменению химического состава и микроструктуры поверхности заготовки или изделия с целью получения требуемых характеристик. Такое изменение является результатом взаимодействия поверхности с окружающей средой определенного состояния, состава, температуры. Наиболее распространенные виды химической обработки – цементация (науглероживание), азотирование, карбонитрация (одновременное насыщение углеродом и азотом).

Технология цементации стали

Этот процесс подразумевает диффузионное насыщение поверхностного слоя стальных заготовок углеродом. Обработка осуществляется в карбюризаторе, выделяющем активный углерод, при температурах устойчивости аустенита – 850-950°C, хорошо растворяющего большое количество углерода. Для завершения процесса после цементации проводят закалку и низкий отпуск. Результаты химико-термической и термической обработок в комплексе:

  • высокая твердость и износостойкость поверхности;
  • повышение предела контактной устойчивости;
  • улучшение показателей предела выносливости при изгибе и кручении.
Читайте также  Производство стеклянной плитки в домашних условиях

Внимание! Желаемый эффект достигается на сталях с низким содержанием углерода – до 0,2%. Без цементации такие марки закалить невозможно. Чаще всего цементации подвергают легированные стали.

Эта операция является длительной, поскольку процесс науглероживания протекает очень медленно. Основные типы сред для цементации (карбюризаторов):

  • твердые;
  • газообразные;
  • растворы электролитов;
  • пасты;
  • кипящий слой.

Отличительные признаки:

  • Модульная компоновка (подготовительный, основной, экологический модули, а также модуль охлаждения и промывки) позволяет в широких пределах варировать конфигурацией оборудования и технологиями упрочнения.
  • Обработка с частичным погружением позволяет проводить упрочнение отдельных участков деталей.
  • Высокая скорость обработки деталей в расплавах, по сравнению с газовыми технологиями достигаются за счет значительного сокращения времени прогрева и выдержки.
  • Отсутствие газообразных выбросов и жидких отходов обеспечивается экологическим модулем, в который входит воздушный фильтр и испаритель промышленных стоков.

Структура карбонитрированного слоя

В процессе карбонитрации на поверхности сталей формируется упрочненный слой, состоящий из нескольких зон. Верхний слой представляет собой ε-карбонитрид типа Fe3 (N, C) — зона соединений (Compound layer), т. н. «белый слой», под которым находится диффузионная зона (Diffusion layer), т. н. «гетерофазный слой», состоящий из твердого раствора углерода и азота в железе с включениями карбонитридных фаз, твердость которой значительно выше твердости сердцевины.

Типовая микроструктура стали после карбонитрации

Схема образования упрочненного слоя в расплаве солей

Сталь 3. Карбонитрация 580 °С, 3 часа. Глубина слоя – 0,2 мм

Ниже приведены результаты проведенных компанией DURFERRITE (Германия) коррозионных испытаний упрочненного слоя, полученного методом TENIFER-QPQ, в сравнении с другими способами поверхностной обработки.

Зависимость износа образца из Cтали 20 от пути трения со смазкой. Путь трения км х 100

Сравнение износостойкости образца из стали 40Х после карбонитрации (1) и газового азотирования в среде аммиака (2)

Коррозионные испытания (CASS) в соответствии с немецким стандартом DIN 50021 стали SAE 1045

На указанных примерах наглядно видны преимущества карбонитрированного слоя по сравнению с традиционными, наиболее часто применяемыми у нас процессами поверхностной обработки: цементацией, азотированием, хромированием. Кроме того, следует отметить, что при хромировании снижается усталостная прочность при циклическом изгибе основного материала. По сравнению с этим, при карбонитрировании всегда увеличивается усталостная прочность. После карбонитрации с последующим оксидированием повышение усталостной прочности составляет более 50%, в то время как после твердого хромирования усталостная прочность, наоборот, снижается на 20%.

Всё вышесказанное предопределило массовое распространение технологии жидкостного карбонитрирования за рубежом. Какова же ситуация в нашей стране?

Таблица 3. Результат теста на коррозионную устойчивость стали С45 (3% NaCl, 0.1% H2O2)

Исследованные виды поверхностного упрочнения

Потеря в весе в г/м2 через 24 ч

Карбонитрация с последующим оксидированием + полировка + оксидирование (QPQ)

Твердое хромирование: 12 мкм

Двойное хромирование: 20 мкм мягкого хрома, 25 мкм твердого хрома

Тройное покрытие: 37 мкм меди, 45 мкм никеля, 1,3 мкм хрома

Рис. 2. Распределение твердости по толщине слоя сталей 10 (1), 20 (2), 09Г2С (3) после карбонитрации по режимам: 1 – 590 °С, 3 ч, 2 – 570 °С, 2,25 ч, 3 – 570 ° С, 3 ч

Схема комплексной линии термической и химико-термической обработки в расплавах солей

Рис. 3. Распределение твердости по толщине слоя сталей 40Х (1), 40ХН (2), 40ХМФА (3), 30ХГСА (4). Карбонитрация 570 °С, 5 ч

К материалам ряда деталей паровых и гидравлических турбин предъявляются требования высокой коррозионной стойкости в сочетании с износостойкостью.

Так, детали узлов регулирования паровых турбин, работающие при температуре до 565 °С, должны обладать достаточной сопротивляемостью коррозионному и эрозионному воздействию пара, а также удовлетворительной износостойкостью в условиях сухого трения при взаимном перемещении. Детали сервомоторов, работающие в среде конденсата при температуре 70-80 °С, должны иметь высокую коррозионную стойкость и удовлетворительную работоспособность в условиях сухого трения или водяной смазки. Для поверхностного упрочнения этих деталей на заводах применяется технология газового азотирования. Но, как показано ниже, азотированный слой обладает в два раза меньшей стойкостью к износу по сравнению с карбонитрированным.

Испытания карбонитрированного слоя на износостойкость показывают наличие трех стадий. Первая стадия связана с приработкой и износом пористой верхней части карбонитрированного слоя (рис. 1, верхняя часть слоя толщиной 5 мкм) и занимает небольшое место в износе. Вторая характеризуется исключительно низкой скоростью износа карбонитридной фазы. Слой изнашивается без выкрашивания и сколов, что свидетельствует о его высокой пластичности и вязкости. Третья фаза относится к износу гетерофазного слоя. Здесь в массе феррита присутствуют дисперсные карбиды и нитриды железа и легирующих элементов, и такая структура вообще характеризуется высоким сопротивлением износу.

Сравнительные испытания на износостойкость различных видов диффузионных покрытий показывают, например: скорость износа стали 20 после цементации более, чем в 20 раз выше, чем после карбонитрации (см. таблицу) (рис. 4).

Метод химико- термической обработки Толщина упрочненного слоя, мкм Условия испытаний Скорость износа, мг/км пути трения
Нагрузка, Н Скорость скольжения, м/с
Цементация 800 500 0,5 0,15/180
800 1000 1,5
Карбонитрация
Карбонитридный слой 14 500 0,5 0,007/5,5
14 1000 1,5
Гетерофазный слой 270 500 0,5 0,025/150
270 1000 1,5
Примечание. Указана скорость износа при трении со смазкой (числитель) и без смазки (знаменатель)

Основные модули комплексной линии термической и химико-термической обработки в расплавах солей

1.Подготовительный модуль состоит из печи подогрева, а также, в зависимости от требований к линии, камеры обезжиривания и моечной машины.

Основное назначение – подготовить детали непосредственно к термической или химико-термической обработке.

2. Основной модуль в зависимости от требований производства может состоять из линии жидкостной карбонитрации, линии закалки быстрорежущих и штамповых сталей и/или линии жидкостной цементации. Любая из линий основного модуля может быть встроена в существующую линию без закупки дополнительного оборудования.

Все средства нагрева, входящие в основной модуль, делятся на печи-ванны (нагрев до 950 °С) и электродные печи (нагрев до 1300 °С). Все печи-ванны комплектуются легкосъёмными муфелями, изготовленными из жаропрочной стали или титана, в зависимости от типа процесса и температуры эксплуатации. Рабочее пространство электродной печи футеровано фасонными керамическими блоками. За счет унификации размеров печей-ванн существует возможность оперативной замены вышедшей из строя печи подобной печью. Для удобства управления каждая единица термического оборудования оснащена отдельным шкафом управления .

Все печи-ванны оснащаются бортовыми отсосами для отвода отходящих газов.

3. Модуль охлаждения и промывки. С помощью этого модуля производится охлаждение деталей после термической или химико-термической обработки с необходимой скоростью (охлаждение на воздухе, в масло, в воду), а также проходит очистка деталей от остатков соли в промывочном каскаде.

4. Экологический модуль. Основной частью экологического модуля являются испаритель промышленных стоков и воздушный фильтр, которые позволяют избавится от жидких и газообразных отходов производства. Также экологический модуль комплектуется накопителем промышленных стоков для сбора и хранения загрязненной воды.

Стоимость зависит от габаритов печей и комплектации линии.

Карбонитрация

Компания Термохим предлагает услуги по карбонитрации деталей в Москве — в нашем Инновационном центре упрочнения.

Карбонитрация сталей и чугуна

Сущность метода карбонитрации заключается в том, что детали машин и инструменты, изготовленные из любых марок стали и чугуна, подвергают нагреву в расплаве солей, синтезированных из аммоноуглеродных соединений (меламин, мелон, дициандиамид), при температуре 540-600 o С с выдержками 5-40 мин для режущего инструмента и 1-4 часа для деталей машин и штампового инструмента в зависимости от требуемой толщины упрочненного слоя. Технология используется для повышения износостойкости, усталостной прочности и – в сочетании с оксидированием – для увеличения коррозионной стойкости. Во многих случаях карбонитрация является альтернативой таких процессов, как поверхностная закалка, гальваническое хромирование, цементация и нитроцементация и др.

Читайте также  Как красить алюминий в домашних условиях?

После карбонитрации на поверхности сталей формируется упрочненный слой, состоящий из нескольких зон. Верхний слой ε– карбонитрид типа Fe3(N,C). Под карбонитридным слоем располагается зона γ’ – фазы типа Fe4(N,C) , под которой находится диффузионная зона (гетерофазный слой). Она состоит из твердого раствора углерода и азота в железе с включениями карбонитридных фаз, твердость которой значительно выше твердости сердцевины. Концентрация азота и углерода при этом существенно снижается.

Технологическая схема процесса оксикарбонитрации

Структура стали 40Х после карбонитрации

Применение карбонитрации для обработки деталей повышает усталостную прочность на 50-80%, резко увеличивает износостойкость по сравнению с цементацией, нитроцементацией, газовым азотированием, обеспечивает минимальные величины деформаций в пределах допуска чертежа. Технология применима для упрочнения деталей из любых марок сталей и чугуна обеспечивает микронную точность (см. Таблицу характеристик упрочненного слоя и твердости сердцевины после карбонитрации). Среди технологий низкотемпературного упрочнения карбонитрация в расплавах солей является наиболее экономичным процессом, т.к. сокращает длительность насыщения до 0,5-6 ч, вместо 10-60 ч при газовом азотировании. При этом практически отсутствует хрупкость карбонитрированного слоя. Процесс карбонитрации, как правило, является окончательной операцией.

Свойства карбонитрированного слоя:

  • толщина 0,01-0,6 мм;
  • поверхностная твердость – 400-1200 HV;
  • повышение износостойкости в 2-11 раз;
  • снижение коэффициента трения в 1,5-5 раз;
  • хрупкость слоя – отсутствует;
  • повышение задиростойкости, включая нержавеющие стали;
  • повышение усталостной прочности в 1,5-2 раза;
  • повышение коррозионной стойкости перлитных сталей в 1,5-2 раза;
  • коробление и поводки длинномерных деталей – практически отсутствуют.

Изменение коэффициента трения стали 12Х18Н10Т в зависимости от удельного давления при контактном трении

Коррозионные испытания штоков автомобильных амортизаторов из стали 40Х с различными видами покрытий

Зависимость износа стали 18ХГТ от пути трения со смазкой

Изменение износостойкости по толщине карбонитрированного слоя чугуна ВЧ50

Распределении твердости по толщине карбонитрированного слоя сталей и чугуна (580oС 3 ч

Изменение коэффициента трения по толщине карбонитрированного слоя чугуна ВЧ50

Структура и фазовый состав стали 25Х2М1Ф после оксикарбонитрации

Коэффициент трения различных видов покрытий на стали типа 40Х

Сравнительные характеристики износостойкости цементированной и карбонитрированной стали 18ХГТ

Усталостные испытания чугуна ВЧ5

Технология НОК-PQ

Для придания коррозионных свойств деталям рекомендуется проводить процесс оксидирования в нитритно — щелочном расплаве при температуре 350-400 o С или водном растворе при 130-150 o С.В результате карбонитрации шероховатость поверхности в среднем ухудшается на 1-1,5 класса, поэтому после оксидирования для восстановления шероховатости поверхности можно использовать различные методы полирования:

  • Притирка доводочной шкуркой зернистостью 360 или мельче;
  • Полирование или тонкое шлифование специальными полировочными кругами в непрерывном процессе подобно бесцентровому шлифованию или шлифованию на токарных автоматах;
  • Скользящее шлифование в вибрационной емкости;
  • Струйная обработка стеклянными шариками диаметром 40-70 мкм.

При проведении процессов шлифования или полирования возможна потеря коррозионных свойств деталей, поэтому рекомендуется повторное оксидирование.Применение операции оксидирования после карбонитрации приводит практически к полному уничтожению цианидов, находящихся на поверхности.

Технологическая схема НОК-PQ — процесса

Технология карбонитрации в сочетании с оксидированием, полированием и повторным оксидированием, получившая название НОК-PQ (в Германии Tenifer – QPQ) придает деталям машин и инструменту несравнимо более высокие эксплуатационные характеристики.

Свойства оксикарбонитридного слоя

Поверхностная шероховатость образцов из стали 45 после карбонитрации (580°С 2 ч) с последующей обработкой по различным вариантам

Она может быть использована взамен гальванического хромирования, например, на деталях гидросистем, запорно- регулирующей арматуры, штампового инструмента и др.

Стоимость обработки договорная и определяется исходя из сложности, размеров,веса и количества деталей. Для того, чтобы узнать цену карбонитрации, необходимо отправить запрос (с четрежом детали) по одному из адресов, указанном на странице КОНТАКТЫ.

Оксикарбонитрация деталей – эффективный способ повышения надёжности арматуры

4 февраля 2019 г.

Материал подготовлен Цицилиным В.В., начальником лаборатории металлов и ТО ООО «БКЗ»
и Калошиным В.И., техническим директором ООО «БКЗ».

На предприятиях России, производящих арматуру для ТЭС и АЭС (рис. 1,2), для повышения надежности и долговечности деталей (рис. 3) часто используется низкотемпературная технология поверхностного упрочнения – газовое азотирование.

Основное назначение применения этой технологии – повышение поверхностной твердости, износостойкости, коррозионной стойкости в водяной, воздушной и паровой среде. Недостатком технологии газового азотирования является большая длительность технологического цикла, достигающая несколько десятков часов, и повышенная хрупкость азотированного слоя. ООО «Барнаульский котельный завод» применяет намного менее распространенный и значительно более интенсивный метод – жидкостное азотирование в расплавах солей – оксикарбонитрацию.

Оксикарбонитрация – эффективный процесс упрочнения поверхности стальных и чугунных изделий за счёт насыщения её атомарным азотом и углеродом в расплаве солей на основе ционата калия. Атомарные азот и углерод адсорбируются поверхностью металла и диффундируют в неё. Образующиеся нитриды железа и легирующих элементов значительно повышают твёрдость поверхности, износостойкость, задиростойкость, разгаростойкость, коррозионную стойкость. Усталостная прочность повышается на 50-80 %. Поверхностное упрочнение при низкотемпературном процессе не связано с формированием мартенситных структур (как в случае высокотемпературного цианирования), а связано с образованием нитридов и карбонитридов, и сам процесс протекает в условиях, исключающих α – γ превращение. Поэтому локальные разогревы в месте контакта при трении, контактном нагружении не приводят к местному разупрочнению карбонитрированных слоев, чего нельзя избежать в случае мартенситных структур, получаемых при закалке или других видах высокотемпературных процессов и обработок. Это подтверждает заключение по результатам проведенных нами триботехнических испытаний в НГТУ (г. Новосибирск): «…применение химико-термической обработки не оказывает существенного влияния на показатели коэффициента трения как в условиях обильного смазывания минеральным маслом М8Г, так и в условиях периодического смазывания консистентным смазочным материалом «Литол-24». Значения коэффициента трения как для нетермообработанных образцов, так и образцов после оксикарбонитрирации находятся в диапазоне 0,07-0,09. Однако применение оксикарбонитрирования повышает показатели задиростойкости более чем в 2 раза. Предельная нагрузка схватывания у образцов после ХТО составляет 1700 Н (удельная нагрузка 86,6 кг/см 2 ), а у образцов в исходном состоянии – 800 Н (удельная нагрузка 40,7 кг/см 2 )».

Процессы оксикарбонитрации в расплаве солей идут путем окисления:

2КСN + O2 = 2KCNO

2KCNO + O2 =K2CO3 + 2N + CO

2CO = CO2 + C с выделением атомов азота и углерода в результате окисления цианата.

Не сам цианид калия (КСN), а продукт его окисления – цианат калия (KCNO) – является поставщиком активных атомов азота и углерода в рабочем расплаве. В отличие от цианида цианат калия – вещество неядовитое, пожаро- и взрывобезопасное, хорошо растворимое в воде.

После карбонитрации углеродистых и низколегированных сталей перлитного класса на поверхности детали образуется упрочненный слой, состоящий из двух зон. Верхняя зона толщиной до 15 мкм, по данным рентгеноструктурного анализа, представляет собой карбонитрид Fe3 (N, C) или оксикарбонитрид Fe3 (N, C, О)в зависимости от состава стали. Под карбонитридным слоем располагается диффузионная зона (гетерофазный слой), состоящая из твердого раствора углерода и азота в железе с включениями карбонитридных фаз, твердость которой значительно выше твердости сердцевины и плавно снижается от поверхности к основе. В таблице приведены характеристики карбонитрированного слоя для наиболее часто применяемых в арматуростроении сталей.

Читайте также  Снятие серебра электролизом в домашних условиях

Процесс оксикарбонитрации осуществляется на линии, которая включает следующие технологические агрегаты:

  • Печь-ванну предварительной обработки. Используется для обезжиривания и окислительного подогрева деталей до 350 °С перед погружением в расплав печи-ванны карбонитрации.
  • Печь-ванну карбонитрации. Предназначена для упрочнения поверхности деталей в расплаве на основе цианата калия при температуре 560-570 °С.
  • Печь-ванну охлаждения и нейтрализации. Служит для охлаждения деталей до температуры (450H±10 °С) и нейтрализации солей, вынесенных из печи-ванны карбонитрации.
  • Печь-ванну охлаждения. Используется для охлаждения деталей до температуры 350 °С и их отмывки от остатков солей предыдущих ванн.
  • Ванну промывки в холодной воде. Здесь осуществляется удаление остатков расплава с поверхности деталей и его окончательная отмывка.
  • Ванну финишной обработки. Служит для обеспечения товарного вида деталей и их консервации.

Оксикарбонитрация является заключительной операцией технологического процесса изготовления деталей.

Упрочнению подвергаются детали в готовом (чистом) виде с шероховатостью поверхности, соответствующей требованию чертежа.

В целях обеспечения качества карбонитрации, сохранения размеров и геометрии детали перед упрочнением в процессе изготовления должны быть подвергнуты закалке с высоким отпуском. Детали не должны иметь забоин, заусенцев и других поверхностных дефектов. Запрещается подвергать упрочнению детали, имеющие окалину, ржавчину, видимые масляные пятна и прочие загрязнения. Детали должны быть сухими.

Для гарантии качества упрочнения рекомендуется выполнять следующие контрольные операции:
1. Производить измерение микротвёрдости поверхности детали или образца-«свидетеля» на приборе ПМТ-3М при нагрузке 0,5; 0,2; 0,1 кгс.

2. Определять толщину диффузионного слоя путём замера микротвёрдости с интервалом 0,01 мм по ГОСТ 9450-76 на приборе ПМТ-3М при нагрузке 0,05 кгс на шлифах образцов-«свидетелей». Толщина диффузионного слоя определяется расстоянием от поверхности до зоны с твёрдостью, соответствующей твёрдости сердцевины. Для выявления структуры диффузионного слоя рекомендуется травление шлифов 4 %-м спиртовым раствором азотной кислоты.

3. Производить контроль размеров установленными средствами измерения (скоба, нутромер, пассаметр и др.).

По внешнему виду упрочнённая поверхность должна быть чёрного или тёмно-серого цвета без наличия видимых признаков нарушения чистоты поверхности. Допускается наличие на поверхности незначительного мажущего легко стираемого налёта окислов железа чёрного или тёмно-коричневого цвета.


Рис. 2. Продукция ООО «Барнаульский котельный завод»

Важно производить контроль температуры всех печей-ванн контрольной термопарой. Детали машин могут быть подвергнуты оксикарбонитрации после любого вида предварительной термической обработки (отжига, нормализации, закалки, улучшения) и в тех случаях, когда термическая обработка не производилась. В любом случае на поверхности деталей образуется износостойкий диффузионный слой, содержащий нитриды и карбонитриды железа и легирующих элементов.

Однако если оксикарбонитрации подвергаются детали, структура которых находится в неустойчивом неравновесном состоянии, то при обработке в ванне карбонитрации произойдут структурные превращения, сопровождающиеся изменением объёма. В результате линейные размеры могут измениться.

При необходимости сохранения после оксикарбонитрации геометрии и линейных размеров, исключения последующей механической обработки, а также обеспечения наилучшего сочетания служебных характеристик диффузионного слоя и сердцевины деталей они перед карбонитрацией должны быть подвергнуты закалке с высоким отпуском, температура которого выбирается, как правило, равной или на 20-40 °С выше температуры карбонитрации.

В ООО «БКЗ» оксикарбонитрация применяется уже более 15 лет, и на сегодняшний день мы не видим более эффективного решения вопроса целого комплекса задач по повышению качественных характеристик деталей в арматуростроении. Процесс карбонитрации прост в осуществлении, не требует сложного оборудования. Стоимость обработки в зависимости от размера детали и компановки садки не превышает 2-5 % детали.

ООО «Барнаульский котельный завод»

Карбонитрация

Карбонитрация — это технология изменения свойств поверхности металлических материалов, основанная на процессе диффузии атомов углерода и азота в структуру металла. В результате повышается твердость и уменьшается износ поверхности заготовки. Данная технология получила широкое распространение в обработке недорогой низкоуглеродистой стали, позволяя придать ей свойства более дорогих марок.

  • Механическая обработка
  • Термическая обработка
  • Химико-термическая обработка
    • Азотирование
    • Алитирование
    • Анодирование
    • Борирование
    • Бороалитирование
    • Газодинамическое напыление
    • Газотермическое напыление
    • Гальваническое покрытие медью (меднение, омеднение)
    • Гальваническое покрытие никелем (никелирование)
    • Гальваническое покрытие хромом (хромирование)
    • Гальваническое покрытие цинком (цинкование, оцинковка)
    • Карбонитрация
    • Многослойное покрытие медью и никелем
    • Многослойное покрытие медью, никелем и хромом
    • Нитроцементация
    • Оксидирование
    • Плакирование
    • Силицирование
    • Термодиффузионное цинкование
    • Травление металла
    • Химическое фосфатирование
    • Хромоалитирование
    • Хромосилицирование
    • Цементация
    • Цианирование
    • Электролитно-плазменная полировка (ЭПП)
    • Электрохимическая полировка металла
  • Резка металла
  • Гибка металла
  • Сварочные работы
  • Литьё металла
  • Обработка металлов давлением
  • Прочие услуги металлообработки
  • Изготовление деталей

«Не нашли подходящего исполнителя? Разместите заказ
на портале и получайте предложения от предприятий уже сегодня.
Это бесплатно и не займет много времени»

Карбонитрация в соседних регионах

Посмотрите информацию о предприятиях, которые оказывают услугу «Карбонитрация» в соседних регионах. Возможно вы найдете подходящего исполнителя среди них.

Свердловская область (14) Омская область (1) Томская область (1) Курганская область (0) Республика Коми (0) Ханты-Мансийский АО — Югра (0)

Карбонитрация

Карбонитрацией называется эффективная методика упрочнения поверхностей деталей, выполненных из металла. Данная технология увеличивает прочность элементов, в комплексе с оксидированием еще и обеспечивает коррозийную устойчивость. В большинстве случаев, эта методика становится экономичной альтернативой другим способам обработки поверхностей металлических изделий с целью повышения их стойкости к неблагоприятным внешним воздействиям. Речь идет о гальваническом хромировании, цементации. Услуги по карбонитрации металла очень востребованы – это объясняется тем, кто методика прекрасно себя зарекомендовала, к тому же, ее использование выгодно.

Суть технологии карбонитрации

Предприятия, оказывающие услуги по карбонитрации металла в Тюмени, получают от этого хорошую прибыль. Специалисты таких компаний могут подробно рассказать о сути этого метода. Она состоит в увеличении прочности наружного слоя стальных и чугунных изделий за счет насыщения азотом и углеродом. В результате этого процесса в поверхностных слоях металла формируются карбонитридные фазы, обладающие пластичными свойствами и не отличающиеся хрупкостью. Среди всех методов упрочнения поверхностей в условиях низких температур карбонитрация самый экономичный. При идентичных требованиях к плотности упрочнённого слоя в несколько раз уменьшается продолжительность насыщения в сравнении с газовым азотированием. Этот способ дает возможность повышать прочность поверхностей элементов почти всех марок стали. Его применяют и для улучшения прочностных характеристик чугунных изделий. Плотность упрочнения для перлитных разновидностей стали равна 0,3-0,6 мм, а для высоколегированных около 0,1 мм. Слои получаются твердыми, максимально прочными и устойчивыми к износу.

Плюсы методики карбонитрирования

Главные преимущества метода карбонитрирования заключаются интенсивной скорости и равномерном насыщении и нагревании. При использовании данной технологии снижаются термические напряжения, благодаря этому обеспечиваются минимальные значения деформаций. Интенсивность охлаждения после насыщения широко регулируется. Еще один плюс состоит в увеличении усталостной прочности элементов более чем на 50%. Значительно повышается стойкость деталей к износу, в сравнении с другими техниками упрочнения, например, цементацией. Технология можно применять для упрочнения изделия из любых марок стали. У перлитных сталей коррозийная устойчивость повышается примерно вдвое. К плюсам можно отнести и уменьшения коэффициента трения. Карбонитрацию можно применять для упрочнения деталей из бюджетных низкоуглеродистых сталей. Такие изделия почти не азотируются классическим методом. В ходе карбонитрации поверхности приобретают повышенную твердость. Обработка изделий таким способом, по сути, является финишным процессом. С помощью данной технологии можно обрабатывать детали с частичным погружением.

Портал «Металлообработчики»
в Тюменской области