Как сделать эми в домашних условиях?

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Как сделать генератор электромагнитных импульсов своими руками

Вас достала слишком громкая музыка соседей или просто хотите сделать какой-нибудь интересный электротехнический прибор самостоятельно? Тогда можете попробовать собрать простой и компактный генератор электромагнитных импульсов, который способен выводить из строя электронные устройства поблизости.

Генератор ЭМИ, представляет собой устройство, способное генерировать кратковременное электромагнитное возмущение, которое излучается наружу от своего эпицентра, нарушая при этом работу электронных приборов. Некоторые всплески ЭМИ встречаются в природе, например, в виде электростатического разряда. Также существуют искусственные всплески ЭМИ, к таким можно отнести ядерный электромагнитный импульс.

В данном материале будет показано, как собрать элементарный генератор ЭМИ, используя обычно доступные элементы: паяльник, припой, одноразовый фотоаппарат, кнопка-переключатель, изолированный толстый медный кабель, проволока с эмалированным покрытием, и сильноточный фиксируемый переключатель. Представленный генератор будет не слишком сильным по мощности, поэтому у него может не получиться вывести из строя серьезную технику, но на простые электроприборы он повлиять в состоянии, поэтому данный проект следует рассматривать как учебный для новичков в электротехнике.

Итак, во-первых, нужно взять одноразовый фотоаппарат, например, Kodak. Далее нужно вскрыть его. Откройте корпус и найдите большой электролитический конденсатор. Делайте это в резиновых диэлектрических перчатках, чтобы не получить удар током при разряде конденсатора. При полной зарядке на нем может быть до 330 В. Проверьте вольтметром напряжение на нем. Если заряд еще имеется, то снимите его, замкнув выводы конденсатора отверткой. Будьте осторожны, при замыкании появится вспышка с характерным хлопком. Разрядив конденсатор, вытащите печатную плату, на которой он установлен, и найдите маленькую кнопку включения/выключения. Отпаяйте ее, а на ее место запаяйте свою кнопку-переключатель.

Припаяйте два изолированных медных кабеля к двум контактам конденсатора. Один конец этого кабеля подключите к сильноточному переключателю. Другой конец оставьте пока свободным.

Теперь нужно намотать нагрузочную катушку. Оберните проволоку с эмаль-покрытием от 7 до 15 раз вокруг круглого объекта диаметром 5 сантиметров. Сформировав катушку, оберните ее клейкой лентой для большей безопасности при ее эксплуатации, но оставьте два выступающих провода для подключения к клеммам. Используйте наждачную бумагу или острое лезвие, чтобы удалить эмалевое покрытие с концов проволоки. Один конец соедините с выводом конденсатора, а другой с сильноточным переключателем.

Теперь можно сказать, что простейший генератор электромагнитных импульсов готов. Чтобы зарядить его, просто подключите батарею к соответствующим контактам на печатной плате с конденсатором. Поднесите к катушке какое-нибудь портативное электронное устройство, которое не жалко, и нажмите переключатель.

Помните, что не стоит удерживать нажатой кнопку заряда при генерации ЭМИ, иначе вы можете повредить цепь.

Электромагнитный импульсный генератор – ЧАСТЬ 1

Этот серьезный проект показывает, как получить импульс электромагнитной энергии в несколько мегаватт, который может нанести непоправимый вред электронному компьютеризированному и чувствительному к электромагнитным помехам коммуникационному оборудованию. Ядерный взрыв вызывает подобный импульс, для защиты от него электронных устройств необходимо принимать специальные меры. Этот проект требует накопления смертельного количества энергии, и его не следует пытаться реализовать вне специализированной лаборатории. Подобное устройство можно использовать для вывода из строя компьютерных систем управления автомобилем с целью остановки автомобиля в неординарных случаях угона или если за рулем находится пьяный

Рис. 25.1. Лабораторный электромагнитный импульсный генератор

и опасный для окружающих автомобилистов водитель. Электронное оборудование можно протестировать с помощью электронного импульсного генератора на чувствительность к мощным импульсным помехам – к молниям и потенциальному ядерному взрыву (это актуально для военного электронного оборудования).

Проект описан здесь без указания всех деталей, указаны только основные компоненты. Используется дешевый открытый искровой разрядник, но он даст только ограниченные результаты. Для достижения оптимальных результатов необходим газовый или радиоизотопный разрядник, который эффективен для создания помех как при потенциальном ядерном взрыве (рис. 25.1).

Общее описание устройство

Генераторы ударной волны способны вырабатывать сфокусированную акустическую или электромагнитную энергию, которая может разрушать предметы, применяться в медицинских целях, например, для разрушения камней во внутренних органах человека (почках, мочевом пузыре и т.д.). Генератор электромагнитных импульсов может вырабатывать электромагнитную энергию, которая может разрушать чувствительную электронику в компьютерах и микропроцессорном оборудовании. Нестабилизированные индуктивно-емкостные цепи LC могут вырабатывать импульсы в несколько гигаватт за счет использования устройств взрывания провода. Эти импульсы высокой энергии – электромагнитные импульсы (в иностранной технической литературе ЕМР – ElectroMagnetic Pulses) можно использовать для тестирования твердости металла параболических и эллиптических антенн, гудков и других направленных дистанционных воздействий на предметы.

Например, в настоящее время ведутся исследования по разработке системы, которая будет выводить автомобиль из строя во время опасной погони на высоких скоростях за человеком, совершившим противоправное действие, например, угонщиком или пьяным водителем. Секрет заключается в генерации обладающего достаточной энергией импульса для сжигания электронных управляющих процессорных модулей автомобиля. Это гораздо проще выполнить, когда автомобиль покрыт пластиком или оптоволокном, чем когда он покрыт металлом. Экранирование металлом создает дополнительные проблемы исследователю, разрабатывающему практически применимую систему. Можно построить устройство и для этого тяжелого случая, но оно может быть дорогостоящим и оказать вредное воздействие на дружественные устройства, заодно выводя их из строя. Поэтому исследователи находятся в поиске оптимальных решений для мирных и военных целей применения электромагнитных импульсов (ЕМР).

Цель проекта заключается в генерации пикового импульса энергии для тестирования на прочность электронного оборудования. В частности, данный проект исследует использование подобных устройств для выведения из строя транспортных средств за счет разрушения микросхем компьютера. Мы проведем эксперименты по разрушению цепей электронных устройств с помощью направленной ударной волны.

Внимание! Донный проект использует смертельно опасную электрическую энергию, которая при неправильном контакте может убить человека мгновенно.

Система высокой энергии, которая будет собрана, использует взрывающийся провод, который может создать эффекты, подобные шрапнели. Разряд системы может серьезно повредить электронику близко расположенных компьютеров и другого аналогичного оборудования.

Конденсатор С заряжается от источника тока до напряжения источника питания в течение определенного периода времени. Когда он достигает напряжения, соответствующего определенному уровню запасенной энергии, ему дается возможность быстро разрядиться через индуктивность резонансного LC-конту- ра. Генерируется мощная, недемпфированная волна на собственной частоте резонансного контура и на ее гармониках. Индуктивность L резонансной цепи может состоять из катушки и индуктивности связанного с ней провода, а также собственной индуктивности конденсатора, которая составляет около 20 нГн. Конденсатор цепи является накопителем энергии и также оказывает влияние на резонансную частоту системы.

Излучение энергетического импульса может быть достигнуто посредством проводящей конической секции или металлической структуры в форме рупора. Некоторые экспериментаторы могут использовать полуволновые элементы с питанием, подаваемым на центр катушкой, связанной с катушкой резонансной цепи. Эта полуволновая антенна состоит из двух четвертьволновых секций, настроенных на частоту резонансной схемы. Они представляют собой катушки, намотка которых имеет примерно одинаковую длину с длиной четверти волны. Антенна имеет две радиально направленные части, параллельные длине или ширине антенны. Минимальное излучение происходит в точках, расположенных по оси или на концах, но мы не проверяли на практике этот подход. Например, газоразрядная лампа будет вспыхивать ярче на расстоянии от источника, индицируя мощный направленный импульс электромагнитной энергии.

Наша тестовая импульсная система вырабатывает электромагнитные импульсы в несколько мегаватт (1 МВт широкополосной энергии), которые распространяются с помощью конической секционной антенны, состоящей из параболического рефлектора диаметром 100-800 мм. Расширяющийся металлический рупор 25×25 см также обеспечивает определенную степень воздействия. Специальный

Рис. 25.2. Функциональная схема импульсного электромагнитного генератора Примечание:

Базовая теория работы устройства:

Резонансная схема LCR состоит из указанных на рисунке компонентов. Конденсатор С1 заряжается от зарядного устройства постоянного тока током lc. Напряжение V на С1 опг*а’ ouivwrcs. соотношением:

Искровой разрядник GAP установлен на запуск при напряжении V чуть ниже50000 В. При запуске пиковый ток достигает значения:

Читайте также  Литье резины в домашних условиях

1. Цикл заряд а: dv=ldt/C.

(Выражает напряжение заряда на конденсаторе в функции времени, где I – постоянный ток.)

2. Накопленная энергия в С как функция от напряжения: £=0,5CV

(Выражает энергию в джоулях при увеличении напряжения.)

3. Время отклика V* цикла пикового тока: 1,57 (LC) 0 – 5 . (Выражает время для первого пика резонансного тока при запуске искрового разрядника.)

4. Пиковый ток вточке V* цикла: V(C/ Ц 05 (Выражает пиковый ток.)

5. Исходный отклик в функции от времени:

Ldi/dt+iR+ 1/С+ 1/CioLidt=0.

(Выражает напряжение как функцию от времени.)

6. Энергия катушки индуктивности в д жоулях: E=0,5U 2 .

7. Отклик, когда схема разомкнута при максимальном токе через L: LcPi/dt 2 +Rdi/dt+it/С=dv/dt.

Из этого выражения видно, что энергия катушки должна направляться куда-либо в течение очень короткого времени, результатом чего является взрывное поле высвобождения энергии Е х В.

Мощный импульс в много мегаватт вд иапазонеулырвныилс чг>;*ттеля. i-M. г п1гч электромагнитная волна будетзависетъотгеометрии конструкции. Большая длина г* Х’бодз обеспечит лучшие характеристики магнитного поля В, а короткие приесда в большей степени образуют поле электрическое поле Е. Эти параметры войдут в уравнения взаимодействия эффективности излучения антенны. Наилучшим подходом здесь является экспериментирование с конструкцией антенны для достижения оптимальных результатов с использованием ваших математических знаний для улучшения основных параметров. Повреждения схемы обычно являются результатом очень высокого di/dt (поле «В») импульса. Это предмет для обсуждения!

конденсатор 0,5 мкФ с малой индуктивностью заряжается за 20 с с помощью устройства ионного заряда, описанного в главе 1 «Антигравитационный проект», и дорабатывается, как показано. Можно достичь более высокой скорости заряда с помощью систем с более высоким током, которые можно получить по специальному заказу для более серьезных исследований через сайт www.amasingl.com.

Радиочастотный импульс высокой энергии можно генерировать также и в случае, где выход импульсного генератора взаимодействует с полноразмерной полуволновой антенной с центральным питанием, настроенной на частоты в диапазоне 1-1,5 МГц. Реальная дальность действия при частоте 1 МГц – более 150 м. Такая дальность действия может быть избыточна для многих экспериментов. Однако это нормально для коэффициента излучения, равного 1, во всех других схемах этот коэффициент меньше 1. Можно уменьшить длину реальных элементов с помощью настроенной четвертьволновой секции, состоящей из 75 м провода, намотанных через интервалы или с использованием двух-трех- метровых трубок из поливинилхлорида PVC. Эта схема вырабатывает импульс низкочастотной энергии.

Пожалуйста, имейте в виду, как это уже указывалось ранее, что импульсный выход этой системы может причинить вред компьютерам и любым приборам с микропроцессорами и другими аналогичными схемами на значительном расстоянии. Всегда будьте осторожны при тестировании и использовании этой системы, она может повредить устройства, которые просто находятся рядом. Описание основных частей, использованных в нашей лабораторной системе, дает рис. 25.2.

Конденсатор С, используемый для подобных случаев, должен обладать очень низкой собственной индуктивностью и сопротивлением разряда. В то же время этот компонент должен обладать способностью к накоплению достаточной энергии для генерации необходимого импульса высокой энергии заданной частоты. К сожалению, два этих требования вступают в противоречие друг с другом, их трудно выполнить одновременно. Конденсаторы высокой энергии всегда будут обладать большей индуктивностью, чем конденсаторы низкой энергии. Другим важным фактором является использование сравнительного высокого напряжения для генерации сильных токов разряда. Эти значения необходимы для преодоления собственного комплексного импеданса последовательно соединенных индуктивного и резистивного сопротивлений на пути разряда.

В данной системе используется конденсатор 5 мкФ при 50000 В с индуктивностью 0,03 мкГн. Необходимая нам основная частота для схемы низкой энергии составляет 1 МГц. Энергия системы составляет 400 Дж при 40 кВ, что определяется соотношением:

Е = 1/2 CV 2 .

Изготовить катушку для получения низкочастотного радиоимпульса легко. Индуктивность, обозначенная как L1, представляет собой сумму паразитной индуктивности проводов, искрового разрядника, устройства взрывания провода и собственной индуктивности конденсатора. Эта индуктивность входит в резонанс в широком диапазоне частот и должна выдержать высокочастотный разрядный импульс тока I. Величина общей индуктивности составляет 0,05-0,1 мкГн. Размер проводников должен учитывать ток импульса, который в идеале равен Vx(C/L) 1/2 . При переходном процессе ток стремится протекать по поверхности проводника вследствие высокочастотного поверхностного эффекта.

Вы можете использовать катушку из нескольких витков для экспериментов с низкими частотами с двойной антенной. Размеры определяются формулой индуктивности воздуха:

Рис. 25.7. Установка искрового разрядника для соединения с антенной при работе с низкой частотой

Данная система предназначена для исследования чувствительности электронного оборудования к электромагнитным импульсам. Систему можно видоизменить для использования в полевых условиях и работы от перезаряжаемых аккумуляторных батарей. Ее энергию можно увеличить до уровня импульсов электромагнитной энергии в несколько килоджоулей, на собственный страх и риск пользователя. Нельзя предпринимать попыток изготовления своих вариантов устройства или использовать данное устройство, если вы не имеете достаточного опыта в использовании импульсных систем высокой энергии.

Импульсы электромагнитной энергии можно сфокусировать или запускать параллельно с помощью параболического отражателя. Экспериментальной мишенью может служить любое электронное оборудование и даже газоразрядная лампа. Вспышка акустической энергии может вызвать звуковую ударную волну или высокое звуковое давление на фокусном расстоянии параболической антенны.

Источники приобретении компонентов и деталей

Как создать электромагнитный импульс

Из курса штатской обороны знаменито, что электромагнитный импульс появляется при ядерном взрыве и вызывает громадные уничтожения. Впрочем, разумеется, не каждый такой импульс столь опасен. При желании его дозволено сделать вовсе маломощным, подобно тому, как искра в пьезозажигалке является крохотной точной копией громадной молнии.

Инструкция

1. Возьмите непотребный карманный пленочный фотоаппарат со вспышкой. Вытянете из него батарейки. Наденьте резиновые перчатки и разберите агрегат.

2. Разрядите накопительный конденсатор вспышки. Для этого возьмите резистор сопротивлением около 1 кОм и мощностью 0,5 Вт, согните его итоги, зажмите его в маленьких плоскогубцах с изолированными ручками, позже чего, удерживая резистор только при помощи плоскогубцев, замкните им конденсатор на несколько десятков секунд.Позже этого окончательно разрядите конденсатор, замкнув его лезвием отвертки с изолированной ручкой еще на несколько десятков секунд.

3. Измерьте напряжение на конденсаторе – оно не должно превышать нескольких вольт. При необходимости, разрядите конденсатор вторично.Напаяйте на итоги конденсатора перемычку.

4. Сейчас разрядите конденсатор в цепи синхроконтакта. Он имеет малую емкость, следственно для его разряда довольно кратковременно замкнуть синхроконтакт. Удерживаете при этом руки подальше от лампы-вспышки, от того что при срабатывании синхроконтакта на нее со особого повышающего трансформатора поступает импульс высокого напряжения.

5. Возьмите полый диэлектрический каркас диаметром в несколько миллиметров. Намотайте на него несколько сотен витков изолированного провода диаметром около миллиметра. Поверх обмотки намотайте несколько слоев изоляционной ленты.

6. Катушку включите ступенчато с накопительным конденсатором вспышки.Если у фотоаппарата нет кнопки проверки вспышки, подключите параллельно синхроконтакту кнопку с отменной изоляцией, скажем, звонковую.

7. Сделайте в корпусе агрегата небольшие выемки для итога проводов от кнопки и катушки. Они необходимы для того, дабы при сборке корпуса эти провода не оказались пережатыми, что пугает их обрывом. Снимите перемычку с накопительного конденсатора вспышки. Соберите агрегат, позже чего снимите резиновые перчатки.

8. Вставьте в агрегат батарейки. Включите его, отвернув вспышку от себя, дождитесь зарядки конденсатора, позже чего вставьте в катушку лезвие отвертки. Удерживая отвертку за ручку, дабы она не вылетела, нажмите кнопку. Единовременно со вспышкой возникнет электромагнитный импульс , тот, что намагнитит отвертку.

9. Если отвертка намагнитилась неудовлетворительно отменно, дозволено повторить операцию еще несколько раз. По мере применения отвертки она будет помаленьку терять намагниченность. Волноваться по этому поводу не стоит – чай сейчас у вас есть прибор, которым ее дозволено неизменно восстановить.Учтите, что намагниченные отвертки нравятся не каждом домашним мастерам. Одни считают их дюже комфортными, другие – напротив, дюже неудобными.

Совет 2: Как выжить при ядерном взрыве

Скептически настроенные люди при результате на вопрос о действиях при ядреном взрыве скажут, что необходимо обернуть себя простыней, выйти на улицу и строиться в шеренги. дабы принять гибель, какая она есть. Но экспертами разработан ряд рекомендаций, которые помогут выжить при ядерном взрыве.

Читайте также  Как варить алюминий в домашних условиях?

Инструкция

1. При приобретении информации о допустимом ядерном взрыве в местности, где вы находитесь, нужно по вероятности спуститься в подземное убежище (бомбоубежище) и не выходить, пока не получите других инструкций. Если такая вероятность отсутствует, вы находитесь на улице и нет вероятности попасть в помещение, укройтесь за любым предметом, тот, что может представлять охрану, в крайнем случае, лягте плашмя на землю и закройте голову руками.

2. Если вы настоль близко находитесь от эпицентра взрыва, что видна сама вспышка, помните, что вам нужно укрытся от радиоктивных осадков, которые появятся в таком случае в течение 20 минут, все зависит от отдаленности от эпицентра. Значимо помнить, что радиактивные частицы разносятся ветром на сотни километров.

3. Не покидайте своего укрытия без официального заявления властей о том, что это неопасно. Постарайтесь сделать свое нахождение в укрытие максимально удобным, поддерживайте должные санитарные данные, воду и пищу используйте экономно, побольше еды и питья дозволено двавать детям, больным и престарелым людям. По вероятности осуществляйте подмога руководящим бомбоубежища, чай нахождение в ограниченном пространстве большого числа людей может оказаться малоприятным, а продолжительность такого вынужденного сожительстваможет варьироваться от одного дня до месяца.

4. При возвращении в жилище главно помнить и исполнять несколько правил. Перед тем, как войти в дом, удостоверитесь в его целостности, наличии повреждений, отсутствии частичного обрушения конструкций. При входе в квартиру в первую очередь уберите все легковоспламеняющиеся жидкости, медикаменты и всякие другие допустимо небезопасные вещества. Воду, газ и электричество дозволено включить лишь в том случае, когда у вас будет точное доказательство того, что все системы работают в штатном режиме.

5. При передвижении по местности не подходите к поврежденным взрывом территориям и к зонам, помеченным знаками «небезопасные материалы» и «угроза радиации».

Обратите внимание!
Неоценимую подмога вам окажет присутствие при себе радио для прослушивания официальных сообщений местных властей. Неизменно следуйте полученным, потому что власти неизменно располагают большей инфорацией, чем окружающие.

Совет 3: Как сформировать импульс

Электромагнитный толчок малой мощности не горазд вызвать гигантских уничтожений, снося все на своем пути, как скажем, тот, тот, что получается в итоге ядерного взрыва. Сформировать маломощный толчок дозволено в домашних условиях.

Инструкция

1. Для начала раздобудьте непотребный вам в будущем пленочный фотоаппарат, желанно, имеющий вспышку.

2. Наденьте перчатки и приступайте к процессу разряжения накопительного конденсатора вспышки. При помощи плоскогубцев с изоляцией возьмите резистор на 0,5 Вт с сопротивлением приблизительно 1 кОм и замкните при помощи него конденсатор на 30-40 секунд. После этого замкните конденсатор при помощи отвертки с изоляцией еще на полминуты, дабы он окончательно разрядился.

3. Проследите, дабы напряжение в конденсаторе было не больше нескольких вольт. Если потребуется, разрядите его еще раз. На итоги конденсатора сделайте перемычку.

4. Сейчас займитесь разряжением конденсатора в цепи малой емкости – синхроконтакте. Для этого намотайте на диэлектрическую катушку диаметром 5-6 мм около 200 витков изолированного миллиметрового провода. Сверху покройте обмотку изолентой.

5. Подсоедините каркас с обмоткой ступенчато с накопительным конденсатором вспышки. В том случае, если ваш фотоаппарат не имеет кнопку проверки вспышки, то дозволено подключить параллельно синхроконтакту звонковую кнопку.

6. В корпусе фотоаппарата проделайте отверстия для того, дабы вывести провода от кнопки и каркаса с обмоткой. Отверстия дозволят избежать пережатия и обрыва столь значимых проводов. Сейчас можете убрать перемычку с накопительного конденсатора вспышки и собрать агрегат.

7. Снимите перчатки и поставьте в фотоаппарат батарейки. Испробуйте его включить, при этом отворачивая вспышкой в сторону. Немножко подождите, пока конденсатор зарядится, и вставьте в каркас с обмоткой отвертку с изолированной ручкой.

8. Осмотрительно, придерживая отвертку, дабы она не отлетела в сторону, нажмите на кнопку. У вас должен образоваться электромагнитный толчок, намагничивающий отвертку, в момент вспышки.

Видео по теме

Обратите внимание!
Будьте осмотрительны при работе с всякими высоковольтными приборами.

Электромагнитное оружие

На нашем сайте по схемотехнике периодически поднимаются темы, связанные с электронным оружием — пушки Гаусс, глушилки радиочастот и так далее. А что же наша армия, имеющая милиардные бюджеты — как далеко сумели продвинуться военные разработчики на пути создания оружия будущего? Небольшой обзор имеющихся уже сейчас на вооружении образцов мы и рассмотрим далее. Импульсное электромагнитное оружие является реальным, уже проходящим испытания, типом вооружений армии России. Америка и Израиль также проводят успешные разработки в этой области, однако сделали ставку на использование ЭМИ-систем для генерации кинетической энергии боезаряда. У нас же пошли по пути прямого поражающего фактора и создали прототипы сразу нескольких боевых комплексов – для сухопутных войск, ВВС и ВМФ. Сегодня наша «Алабуга», разорвавшись на высоте 300 метров, способна отключить всю электронную аппаратуру в радиусе 3 км и оставить войсковое подразделение без средств связи, управления, наведения огня, при этом превратив всю имеющуюся технику противника в груду бесполезного металлолома. Это ракета, боевым блоком которой является высокочастотный генератор электромагнитного поля большой мощности. Но прежде чем говорить о применении ЭМИ-оружия, следует сказать, ещё что Советская Армия готовилась воевать в условиях применения поражающего фактора ЭМИ. Поэтому вся военная техника разрабатывалась с учётом защиты от этого поражающего фактора. Способы различны — начиная от простейшего экранирования и заземления металлических корпусов аппаратуры и заканчивая применением специальных предохранительных устройств, разрядников и устойчивой к ЭМИ архитектурой аппаратуры. Так что говорить, будто от него нет защиты, тоже не стоит. Да и радиус действия у ЭМИ-боеприпасов не такой большой — плотность его мощности убывает пропорционально квадрату расстояния. Соответственно, убывает и воздействие. Конечно, вблизи точки подрыва защитить технику сложно.

Глушилка электроники

Впервые мир увидел реально действующий прототип электромагнитного оружия на выставке вооружений ЛИМА-2001 в Малайзии. Там был представлен экспортный вариант отечественного комплекса «Ранец-E». Он выполнен на шасси МАЗ-543, имеет массу около 5 тонн, обеспечивает гарантированное поражение электроники наземной цели, летательного аппарата или управляемого боеприпаса на дальностях до 14 километров и нарушения в её работе на расстоянии до 40 км. Несмотря на то, что первенец произвел настоящий фурор в мировых СМИ, спецалисты отметили ряд его недостатков. Во-первых, размер эффективно поражаемой цели не превышает 30 метров в диаметре, а во-вторых, оружие одноразовое — перезарядка занимает более 20 минут, за которые чудо-пушку уже раз 15 подстрелят с воздуха, а работать по целям она может только на открытой местности, без малейших визуальных преград. Возможно по этим причинам американцы и отказались от создания подобного ЭМИ-оружия направленного действия, сконцентрировавшись на лазерных технологиях. Наши оружейники решили испытать судьбу и попытаться «довести до ума» технологию направленного ЭМИ-излучения.

Интересны и другие разработки НИИРП. Исследуя воздействие мощного СВЧ-излучения с земли на воздушные цели, специалисты этих учреждений неожиданно получили локальные плазменные образования, которые получались на пересечении потоков излучения от нескольких источников. При контакте с этими образованиями воздушные цели претерпевали огромные динамические перегрузки и разрушались. Согласованная работа источников СВЧ-излучения, позволяла быстро менять точку фокусировки, то есть производить перенацеливание с огромной скоростью или сопровождать объекты практически любых аэродинамических характеристик. Опыты показали, что воздействие эффективно даже по боевым блокам МБР. По сути, это даже не просто СВЧ-оружие, а боевые плазмоиды. Возможно, именно это подтолкнуло американцев к созданию на Аляске комплекса HAARP (High freguencu Active Auroral Research Program) — научно-исследовательский проект по изучению ионосферы и полярных сияний. Отметим, что тот мирный проект почему-то имеет финансирование агентства DARPA Пентагона.

Электроника на вооружении российской армии

Чтобы понять, какое место занимает тема радиоэлектронной борьбы в военно-технической стратегии российского военного ведомства, достаточно посмотреть Госпрограмму вооружений до 2020 года. Из 21 трлн рублей общего бюджета ГПВ 3,2 трлн (около 15%) планируется направить на разработку и производство систем нападения и защиты, использующих источники электромагнитного излучения. Для сравнения, в бюджете Пентагона, по оценке экспертов, эта доля значительно меньше – до 10%. В общем заметно прибавилась заинтересованность государства в оружии на новых физических принципах. Программы по нему сейчас носят приоритетный характер. А теперь давайте посмотрим на те изделия, которые дошли до серии и поступили на вооружение за последние несколько лет.

Читайте также  Чем клеить оргстекло в домашних условиях?

Мобильные комплексы радиоэлектронной борьбы «Красуха-4» подавляют спутники-шпионы, наземные радары и авиационные системы АВАКС, полностью закрывает от радиолокационного обнаружения на 300 км, а также может нанести радиолокационное поражение вражеским средствам РЭБ и связи. Работа комплекса основывается на создании мощных помех на основных частотах радаров и прочих радиоизлучающих источников.

Средство радиоэлектронной борьбы морского базирования ТК-25Э обеспечивает эффективную защиту кораблей различного класса. Комплекс предназначен для обеспечения радиоэлектронной защиты объекта от радиоуправляемого оружия воздушного и корабельного базирования путем создания активных помех. Предусмотрено сопряжение комплекса с различными системами защищаемого объекта, такими как навигационный комплекс, радиолокационная станция, автоматизированная система боевого управления. Аппаратура ТК-25Э обеспечивает создание различных видов помех с шириной спектра от 60 до 2000 МГц, а также импульсных дезинформирующих и имитационных помех с использованием копий сигналов. Комплекс способен одновременно анализировать до 256 целей. Оснащение защищаемого объекта комплексом ТК-25Э в несколько раз снижает вероятность его поражения.

Многофункциональный комплекс «Ртуть-БМ» разработан и выпускается на предприятиях КРЭТ с 2011 года и является одной из наиболее современных систем РЭБ. Основное назначение станции – защита живой силы и техники от одиночного и залпового огня артиллерийских боеприпасов, оснащенных радиовзрывателями. Отметим, что радиовзрывателями сейчас оснащены до 80% западных снарядов полевой артиллерии, мин и неуправляемых реактивных снарядов и почти все высокоточные боеприпасы, эти достаточно простые средства позволяют защитить от поражения войска в том числе непосредственно в зоне контакта с противником.

Концерн «Созвездие» производит серию малогабаритных (автономных) передатчиков помех серии РП-377. С их помощью можно глушить сигналы GPS, а в автономном варианте, укомплектованном источниками питания, ещё и расставив передатчики на некоторой площади, ограниченной только количеством передатчиков. Сейчас готовится экспортный вариант более мощной системы подавления GPS и каналов управления оружием. Она уже является системой объектовой и площадной защиты от высокоточных средств поражения. Построена она по модульному принципу, который позволяет варьировать площади и объекты защиты. Из несекретных разработок известны также изделия МНИРТИ — «Снайпер-М» «И-140/64» и «Гигаватт», выполненные на базе автоприцепов. Они используются для отработки средств защиты радиотехнических и цифровых систем военного, специального и гражданского назначения от поражения ЭМИ.

Полезная теория

Элементная база РЭС весьма чувствительна к энергетическим перегрузкам, и поток электромагнитной энергии достаточно высокой плотности способен выжечь полупроводниковые переходы, полностью или частично нарушив их нормальное функционирование. Низкочастотное ЭМО создает электромагнитное импульсное

излучение на частотах ниже 1 МГц, высокочастотное ЭМО воздействует излучением СВЧ-диапазона – как импульсным, так и непрерывным. Низкочастотное ЭМО воздействует на объект через наводки на проводную инфраструктуру, включая телефонные линии, кабели внешнего питания, подачи и съема информации. Высокочастотное ЭМО напрямую проникает в радиоэлектронную аппаратуру объекта через его антенную систему. Помимо воздействия на РЭС противника, высокочастотное ЭМО может также влиять на кожные покровы и внутренние органы человека. При этом в результате их нагрева в организме возможны хромосомные и генетические изменения, активация и дезактивация вирусов, трансформация иммунологических и поведенческих реакций.

Главным техническим средством получения мощных электромагнитных импульсов, составляющих основу низкочастотного ЭМО, является генератор с взрывным сжатием магнитного поля. Другим потенциальным типом источника низкочастотной магнитной энергии высокого уровня может быть магнитодинамический генератор, приводимый в действие с помощью ракетного топлива или взрывчатого вещества. При реализации высокочастотного ЭМО в качестве генератора мощного СВЧ-излучения могут использоваться такие электронные приборы, как широкополосные магнетроны и клистроны, работающие в миллиметровом диапазоне гиротроны, генераторы с виртуальным катодом (виркаторы), использующие сантиметровый диапазон, лазеры на свободных электронах и широкополосные плазменно-лучевые генераторы.

Таким образом в будущем, однозначно победа будет за тем, кто сумеет разработать и внедрить наиболее совершенные радиоэлектронные методы ведения боя. А нам остаётся следиь за разработками специалистов и пытаться если не превзойти, то по крайней мере повторить некоторые простые конструкции в домашних радиолюбительских лабораториях. По материалам сайта expert.ru

Модуль драйвера BLDC двигателя жесткого диска — принципиальные электрические схемы включения и обзор готовых блоков.

Радиоприемники — обзор базовых конфигураций приёмной аппаратуры, этапы развития схемотехники.

Как управлять подъемным электромагнитом — теория и практика создания схемы подходящего контроллера для этих целей.

Своими руками пассивный измеритель эми схема. Детектор электромагнитного излучения своими руками. Схемы самодельных устройств охраны и защиты информации

Хочу представить схему устройства, которое имеет чувствительность к высокочастотному электромагнитному излучению. В частности, его можно применить для индикации входящих и исходящих вызовов мобильного телефона. Например, если телефон находится на беззвучном режиме, то это устройство позволит быстрее заметить входящий звонок или SMS.

Все это помещается на монтажную плату длиной 7 см.

Большую часть платы занимает схема индикации.

Также здесь присутствует антенна.


Антенной может служить отрезок любого провода длиной не менее 15 см. Я сделал ее в виде спирали, похожую на катушку. Ее свободный конец просто припаян к плате, чтобы он не болтался. Было испробовано много разных форм антенны, но я пришел к выводу, что важнее не форма, а её длина, с которой вы можете поэксперементировать.

Давайте рассмотрим схему.


Здесь собран усилитель на транзисторах.
В качестве транзистора VT1 использован КТ3102ЕМ. Решил выбрать именно его, потому что он имеет очень хорошую чувствительность.

Все остальные транзисторы (VT2-VT10) это 2N3904.

Рассмотрим схему индикации: транзисторы VT4-VT10 здесь являются ключевыми элементами, каждый из которых включает соответствующий светодиод при поступлении сигнала. В роли транзисторов этой шкалы могут быть использованы любые, можно даже КТ315, но при пайке удобнее использовать транзисторы в корпусе ТО-92 из-за удобного расположения выводов.
Здесь использованы пороговые диоды (VD3-VD8), и поэтому в каждый момент времени светится только один светодиод, показывая уровень сигнала. Правда этого не происходит по отношению к излучению мобильного телефона, так как сигнал постоянно пульсирует с большой частотой, вызывая свечение почти всех светодиодов.


Количество, «светодиодно-транзисторных» ячеек не следует делать больше восьми. Номиналы базовых резисторов здесь одинаковые и составляет 1 кОм. Номинал будет зависеть от коэффициента усиления транзисторов, при использовании КТ315 следует тоже использовать резисторы на 1 кОм.

В качестве диодов VD1, VD2 желательно использовать диоды Шоттки, так как они имеют меньшее падение напряжения, однако все работает даже при использовании распространенного 1N4001. Один из них (VD1 или VD2) можно исключить, если индикация будет слишком зашкаливать.
Все остальные диоды (VD3 — VD8) это те же самые 1N4001, но можно попробовать использовать любые имеющиеся под рукой.

Конденсатор С2 — электролитический, его оптимальная емкость от 10 до 22 мкФ, он на доли секунды задерживает погасание светодиодов.

Номинал резисторов R13 И R14 зависит от потребляемого светодиодами тока, и будет лежать в пределе от 300 до 680 Ом, но номинал резистора R13 может быть изменен в зависимости от питающего напряжения или при недостаточной яркости светодиодной шкалы. Вместо него можно припаять подстроечный резистор и добиться желаемой яркости.

На плате имеется переключатель, который включает некий «турбо режим» и пропускает ток в обход резистора R13, вследствие чего увеличивается яркость шкалы. Я его использую при питании от батарейки типа крона, когда она подсаживается и шкала светодиодов тускнеет. На схеме переключатель не указан, т.к. он не обязателен.

После подачи питания светодиод HL8 начинает гореть сразу и просто указывает на то, что устройство включено.

Питается схема напряжением от 5 до 9 Вольт.

Далее можно изготовить для него корпус, например из прозрачного пластика, а в качестве основания можно использовать фольгированный текстолит. Подключив антенну к металлизации платы, возможно удастся повысить чувствительность этого индикатора высокочастотных излучений.

Кстати, на излучение микроволновки он тоже реагирует.